$$
t x: 2,5,8,1111=36
$$

$$
t_{n}=a_{1}+(n-1) d \quad \begin{array}{ll}
t_{n} & =\text { term } \\
a & =\text { First term } \\
d & =\text { common difference } \\
n & =\text { term } \Rightarrow
\end{array}
$$

$$
s_{n}=a_{1}+a_{2}+a_{3} \cdots a_{n}
$$

$$
\begin{aligned}
& I_{n}=a_{1}+a_{2}+a_{3} \cdots a_{n} \\
& S_{n}=a_{1}+\left(a_{1}+d\right)+\left(a_{1}+2 d\right)+\ldots+\left(a_{1}+(n-1) d\right)
\end{aligned}
$$

$$
S_{n}=a_{1}+\left(a_{1}+d\right)+\left(a_{1}+2 d\right)+\cdots+l
$$

(ε^{2}

* Exapl: Find the Som
(1)

$$
\begin{aligned}
& a=1 \\
& d=1 \\
& l=50 \\
& n=50
\end{aligned}
$$

$$
\begin{aligned}
S_{n} & =\frac{n}{2}(a+l) \\
& =\frac{50}{2}(1+50)=25(51) \\
& =1275
\end{aligned}
$$

(2) Find the Sum for the first 25 numbers in this Serins

$$
\begin{aligned}
& 11+15+19+\cdots \\
\begin{array}{l}
a=11 \\
n=25 \\
d=4
\end{array} & S_{n}=\frac{n}{2}(2 a+(n-1) d) \\
& =\frac{25}{2}(2(11)+(25-1) 4) \\
& =\frac{25}{2}(118)=1475
\end{aligned}
$$

\& 3 Find the Sun of this Sees $7+10+13+\ldots+100$

$$
\begin{array}{lr}
a=7 & t_{n}=a+(n-1) d \\
d=3 & \ldots-2+(n-1) 2
\end{array} \quad S_{n}=\frac{n}{2}(a+l)
$$

$$
\begin{aligned}
& S_{n}=l+(l-d)+(l-2 d)+\ldots+a_{1} \\
& E_{\tau_{1}}+E_{2_{2}} \Rightarrow S_{n}+S_{n}=a_{1}+a_{1}+\ell+a_{1}+2 l d+\cdots+l+l+(l-l)+(l-2 \ell)+\cdots+a_{1} \\
& \frac{2 S_{n}}{2}=\frac{\left(a_{1}+l\right) n}{2} \\
& S_{n}=\frac{n}{2}\left(a_{1}+l\right) \\
& S_{n}=\frac{n}{2}(a+l)=\frac{n}{2}(2 a+(n-1) d) \\
& a=\text { Firstterm } \\
& l=\text { last term } \\
& d=\text { common difference } \\
& n=\text { \# of terms } \\
& \text { (Er) } S_{n}=l+(l-d)+(l-2 d)+\cdots+a_{1} \\
& E_{c_{1}}+t_{q_{2}} \Rightarrow S_{n}+S_{n}=(l+l)+\left(l+a_{1}+\cdots\right)+a_{1} \\
& \begin{array}{l}
\frac{2 S_{n}}{2}=\frac{n}{S_{n}}=\frac{n}{2} \\
2 a+(n-1) d)
\end{array} \\
& \text { pg }
\end{aligned}
$$

$$
\begin{aligned}
& a=7 \\
& d=3 \\
& l=100 \\
& t_{n}=a+(n-1) d \\
& 100=7+(n-1) 3, \\
& -7-7 \\
& \frac{93}{3}=\frac{(n-1)(3)}{3} \\
& 31=n-1 \\
& \text { (4) Evaluate } \\
& \sum_{k=1}^{100}(2 k+1) \\
& a_{1}=2(1)+1 \\
& l=a_{100}=2(100)+1 \\
& =3 \\
& =201 \\
& n=100
\end{aligned}
$$

$$
\begin{aligned}
S_{n} & =\frac{n}{2}(a+l) \\
& =\frac{32}{2}(7+100) \\
& =16(107) \\
& =1712
\end{aligned}
$$

$$
\begin{aligned}
S_{n} & =\frac{n}{2}(a+l) \\
& =\frac{100}{2}(3+201) \\
& =50(204) \\
& =10200
\end{aligned}
$$

(5) write in Summation notation (Σ)

$$
\begin{aligned}
& { }_{a}^{5}+9+13+\cdots+137 \\
& l=a+(n-1) d \\
& 137=5+(n-1) 4 \\
& \begin{array}{l}
-5=5 \\
\frac{132}{4}=\frac{(n-1)^{4}}{4} \\
33=n-1
\end{array} \quad \rightarrow n=34 \\
& t_{n}=a+(n-1) d \\
& t_{n}=5+(n-1) 4
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{n=1}^{34} t_{n} \\
& \sum_{n=1}^{34}[5+(n-1) 4] \\
& \sum_{n=1}^{34}[4 n+1]
\end{aligned}
$$

(6) Find the common difference of an arithmetic Sequan

$$
\begin{aligned}
& \text { with a som of } S_{n}=5 n^{2}-3 n \text {. } \\
& d=a_{2}-a_{1} \\
& S_{1}=a_{1}=5(1)^{2}-3(1) \quad S_{2}=a_{1}+a_{2}=5(2)^{2}-3(2) \\
& d=12-2 \\
& a_{1}=5-3 \\
& a_{1}=2 \\
& =5(4)-6 \\
& d=10 \\
& a_{1}+a_{2}=14 \\
& 2+a_{2}=14 \\
& a_{2}=12
\end{aligned}
$$

(7) Find the Sum of all Multiples of 6 between 100 and 1000

$$
\begin{aligned}
& a=\text { First Multiple }=102 \\
& l=\text { Last Multiple }=996 \\
& n=
\end{aligned}
$$

$$
\begin{aligned}
t_{1} & =a+(n-1) d \\
996 & =102+(n-1) 6 \\
\frac{996-102}{6} & =\frac{6(n-1)}{6} \\
149 & =n-1 \\
150 & =n
\end{aligned}
$$

$$
\begin{aligned}
S_{n} & =\frac{n}{2}(a+l) \\
& =\frac{150}{2}(102+996) \\
& =82350
\end{aligned}
$$

$$
t_{n}=a+(n-1) d \quad S_{n}=\frac{n}{2}(a+l) \quad S_{n}=\frac{n}{2}(2 a+(n-1) d)
$$

t_{n} : term
a: First term
$l:$ last term
n : term number
d: common difference
S_{n} : arithmetic Sum

