Deductive Reasoning

September 12, 2016

7:29 PM

generalizations

Deductive Reasoning: Drawing a specific conclusion through logical reasoning by starting with general assumptions that are known to be valid.

Proof: An argument that shows a statement to be true in all cases. (No counterexamples exists)

Generalization: A principle, statement, or idea that has general application.

Using Deductive Reasoning

In order to use deductive reasoning to prove a conjecture, we must first generalize all the evidence. Then we prove that that generalization is true for all cases.

In other words: we prove our conjecture works for all examples by proving it true for the generalization.

Mathematical Examples

Ex1:

Jon discovered a pattern when adding integers

His conjecture is that whenever you add five consecutive integers, the sum is always 5 times the middle number.

$$(x-2) + (x-1) + x + (x+1) + (x+2) = Sum$$

 $x + x + x + x + x = Sum$

Ex2: is just 5 times the middle number

Prove that an odd number + another odd number is always even.

let x be any integer

Zx: Even #

Prove that an one number + another one number is always even
Let x be any integer / Zx: Even #
then $(Zx+1)$ will be odd $Zx+1$: odd #
Lety be any interger
then (zy+1) will be odd
$(Z \times + 1) + (Z y + 1) = Z \times + Z y + Z$
Even Even Even
An odd + another odd will be even
Ex3:
Prove that the difference between consecutive squares is always an odd number.
Let x be any integer
then consecutive Squares are x2 and (X+1)
$D = (x+1)^2 - x^2$ First
$= (x+1)(x+1) - x^{2}$ I now
= x2+x+x+1 -x
$=$ $2 \times +1$
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
: we will always get an odd number from the difference of Consecutive Squares
from the difference of (onsecutive square)
Using Deductive Reasoning outside of math
To use Deductive Reasoning outside of math equations, we need to introduce the term Premise.
Premise: A statement that is assumed to be true for all cases. (i.e. All crows are birds or all birds lay eggs etc.)
We can use premises to link information and prove a specific fact about something.
Ex: If all crows are birds and all birds lay eggs then what can we conclude about crows?
.: All Crows lay eggs
Antires Not birds

