Geometric Sequences
September 12, 2016

Each new term in a geometric sequence is found by multiplying the previous term by a number. This number is called the common ratio (r).

$$
\text { Ex: } 3,6,12,24,48, \ldots
$$

Common Ratio $=2$
Geometric Sequence
A sequence is geometric if the ratio of the consecutive terms is constant.

$$
r=\frac{a_{2}}{a_{1}}=\frac{a_{3}}{a_{2}}=\ldots=\frac{a_{n}}{a_{n-1}} ; r \neq 0
$$

General Formula for any term

$$
\begin{array}{ll}
t_{n}=a r^{(n-1)} & t_{n}: n^{\text {th }} \text { term } \\
a: \text { First term }
\end{array}
$$

a: First term
n : term number

Ex: Find the Common ratio
a) $4,12,36, \ldots$

$$
\text { b) }-4,2,-1 \text {, }
$$

$$
r=\frac{12}{4}=3
$$

$$
r=\frac{36}{12}=3
$$

$$
r=3
$$

Ex: Find the $7^{\text {th }}$ term in the following Sequence

$$
\begin{array}{ll}
(3,-6,12,-24, \ldots & \\
a=3 \\
r=\frac{-6}{3} & t_{n}
\end{array}=a r^{n-1}(7-1)
$$

Ex: The $3^{\text {rd }}$ term in a geometric sequence is -2 and the $6^{\text {th }}$ term is $-\frac{1}{4}$
Find the $10^{\text {th }}$ term.

Eq

$$
\begin{array}{ll}
t_{3}=a r^{(3-1)} & t_{6}=a r^{(6-1)} \\
-2=a r^{2} & -\frac{1}{4}=a r^{5}\left(E_{21}\right.
\end{array}
$$

$$
\begin{aligned}
t_{n} & =a r^{(n-1)} \\
t_{10} & =(-8)\left(\frac{1}{2}\right)^{(10-1)} 9 \\
& =(-8)\left(\frac{1}{2}\right) \\
& =(-8)\left(\frac{1}{512}\right) \\
& =\frac{-1}{64}
\end{aligned}
$$

*Factoring
Ex: What value of x in the following will form a geometric Sequence.

$$
\begin{aligned}
& \frac{E_{q}}{E_{q 2}} \quad \text { sob } \\
& -\frac{1}{4}<r^{5} \quad-2=a\left(\frac{1}{2}\right)^{2} \\
& \left(-2=a\left(\frac{1}{4}\right)\right) \times 4 \\
& -8=a
\end{aligned}
$$

Ex: What value of x in the following will form a geometric Sequence. $a_{1} a_{2} \quad a_{3}$

$$
x, 2 x+2,3 x+3
$$

$$
r=\sqrt{\frac{a_{2}}{a_{1}}}=\frac{a_{3}}{a_{2}}
$$

$$
x\left(\frac{2 x+2}{-x}\right)=\left(\frac{3 x+3}{2 x+2}\right) x
$$

First

$$
\begin{aligned}
&(2 x+2)(2 x+2)=(3 x+3)(x) \\
& 4 x^{2}+4 x+4 x+4= 3 x^{2}+3 x \\
&-3 x^{2}-3 x \\
& 4 x^{2}+4 x+4 x+4-3 x^{2}-3 x=0
\end{aligned}
$$

x	+
4	5
1×4	5

$$
\begin{gathered}
x^{2}+5 x+4=0 \\
(x+1)(x+4) \\
\begin{array}{c}
(x+4 \\
x+1=0 \\
-1-1 \\
x=-1 \\
x+4=0 \\
-4-4 \\
x=-4
\end{array}
\end{gathered}
$$

