

Deriving the formula

$$
\begin{aligned}
-r S_{n} & =-a r-a r^{2}-a r^{3}-\ldots-a r^{n-1}-a r^{n} \\
S_{n}-r S_{n} & =a+a t+a r^{2}+\ldots+a r^{n}-a r-a r^{2}-\ldots-a r^{n-1}-a r^{n} \\
S_{n}-r S_{n} & =a-a r^{n} \\
\frac{S_{n}(1-r)}{1-r} & =\frac{a\left(1-r^{n}\right)}{1-r} \\
S_{n} & =\frac{a\left(1-r^{n}\right)}{1-r}
\end{aligned}
$$

Formula: Geometric Sum

$$
\begin{array}{ll}
S_{n}=\frac{a\left(1-r^{n}\right)}{(1-r)} & \begin{array}{l}
a: \text { first term } \\
n: \text { term number } \\
r: \text { common ratio }
\end{array} \\
\frac{\overline{\sqrt{\sigma r}}}{} & l: \text { last term }
\end{array}
$$

$$
r \text { : common ration }
$$

Id $S_{6}=$

$$
a=-8
$$

$$
t_{4}=27
$$

$$
\begin{array}{rlrl}
t_{n} & =a r^{n-1} & s_{n} & =\frac{a\left(1-r^{n}\right)}{1-r} \\
27 & =(-8) r^{4-1} & s_{6} & =\frac{-8\left(1-\left(\frac{-3}{2}\right)^{6}\right)}{1-\left(\frac{-3}{2}\right)} \\
\sqrt[3]{27}=\sqrt[3]{(-8) r^{3}} & s^{3} & =\frac{-2 r}{-2} & \\
\frac{-2}{-2} & & \frac{-8\left(1-\frac{729}{64}\right)}{1+\frac{3}{2}} \\
-\frac{3}{2} & =r & & =33.25
\end{array}
$$

Td $\quad b$ \qquad
$2 d$

$$
\sum_{i=a}^{b}\left(2^{i}-5\right) \quad \underline{b-a+1}
$$

$3 f$
$2 d$

$$
n=11-3+1
$$

$$
n=9
$$

$$
\begin{aligned}
& \sum_{i=3}^{11} \frac{2^{i}}{3^{i-1}} a_{1} \\
&=\frac{2^{3}}{3^{3-1}}=\frac{2^{3}}{3^{2}} \\
& a_{2}=\frac{2^{4}}{3^{4-1}}=\frac{2^{4}}{3^{3}} \\
& r=\frac{a_{2}}{a_{1}}=\frac{\frac{2^{4}}{3^{3}}}{\frac{2^{3}}{3^{2}}} \\
&=\left(\frac{2^{4}}{3^{3}}\right)\left(\frac{3^{2}}{2^{3}}\right) \\
& r=\frac{2}{3}
\end{aligned}
$$

$$
\left.\begin{array}{rl}
/ / i & =3 \\
/ / i & =4 \\
S_{n} & =\frac{a\left(1-r^{n}\right)}{1-r} \\
S_{n} & =\left(\frac{2^{3}}{3^{2}}\right) \frac{\left[1-\left(\frac{2}{3}\right)^{9}\right]}{\left[1-\frac{2}{3}\right]} \\
& =\left(\frac{8}{9}\right)\left(\frac{1-\frac{512}{19683}}{1-\frac{2}{3}}\right) \\
& =\left(\frac{8}{9}\right)\left(\frac{19683-512}{19683}\right) \\
\frac{1}{3}
\end{array}\right)
$$

$$
\begin{aligned}
& 4 c \quad \frac{3}{16}-\frac{3}{8}+\frac{3}{4}-\ldots-384 \\
& r=\frac{-\frac{3}{8}}{\frac{3}{16}}=\left(\frac{-3}{8}\right)\left(\frac{16}{3}\right) \\
& =-\frac{16}{8} \\
& r=-2 \\
& \int_{5}^{12} t_{1}=\frac{12}{2} / 31 n^{k-1} \\
& t_{n}=a r^{n-1} \\
& {\left[\begin{array}{l}
t_{n}=a r \\
\left.-384=\left(\frac{3}{16}\right)(-2)^{n-1}\right] \times\left(\frac{16}{3}\right)
\end{array}\right.} \\
& -2048=(-2)^{n-1} \\
& (-2)^{11}=(-2)^{n-1} \\
& 11=n-1 \\
& 12=n
\end{aligned}
$$

$$
\sum_{k=1}^{12} t_{k}=\sum_{k=1}^{12}\left(\frac{3}{16}\right) r^{k-1}
$$

(11) a)

$$
\begin{aligned}
& 40000(1.05)^{5}=\$ 51,051 \leftarrow \text { Higher } \\
& 43000(1.03)^{5}=\$ 49,849
\end{aligned}
$$

b)

$$
\begin{aligned}
\sum_{k=1}^{5} 40000(1.05)^{k-1} \quad S_{5} & =40000 \frac{\left(1-1.05^{5}\right)}{1-1.05} \\
& =\$ 221,025 \\
\sum_{k=1}^{5} 43000(1.03)^{k-1} \quad S_{5} & =43000 \frac{\left(1-1.03^{5}\right)}{1-1.03} \\
& =\$ 228,293
\end{aligned} \text { Higher }
$$

