1.4 \& 1.5: Adding/Subtracting/Multiplying/Dividing

Radicals

September 29,2016 12:53 PM
natasamentasan
If two radical terms have the same radical factor then you can add and subtract them as if the radical was a variable

$$
\begin{aligned}
& \text { Ex: } \quad 5 \sqrt{3}+1 \sqrt{3}=6 \sqrt{3} \\
& \sqrt{27}+\sqrt{4 \times 3}-\sqrt{8}-\frac{1 \times 2}{8}= \\
& 3 \sqrt{3}+2 \sqrt{3}-2 \sqrt{2}=5 \sqrt{3}-2 \sqrt{2} \\
& \begin{array}{c}
3 x \sqrt{63 y}-5 \sqrt{28 x^{2} y}= \\
3 x \sqrt{9 \cdot 7 y}-5 \sqrt{4 \cdot 7 x^{2} y} \\
(3 x)(3) \sqrt{7 y}-(5)(2)(x) \sqrt{7 y}
\end{array} \\
& \begin{array}{l}
9 x \sqrt{7 y}-10 x \sqrt{7 y}= \\
(9 x-10 x) \sqrt{7 y}=-x \sqrt{7 y}
\end{array} \\
& -3 \sqrt{12}+4 \sqrt{75}= \\
& \frac{5}{2} \sqrt[3]{16 x^{4} y^{5}}-x y^{\sqrt[3]{5}} \sqrt{54 y^{2}}= \\
& -3 \sqrt{4 \cdot 3}+4 \sqrt{25 \cdot 3} \\
& (-3)(2) \sqrt{3}+4(5) \sqrt{3} \\
& -6 \sqrt{3}+20 \sqrt{3}=14 \sqrt{3} \\
& \frac{5}{2} \sqrt[3]{(8)(2) x^{3} \cdot x \cdot y^{3} \cdot y^{2}}-x y \sqrt[3]{(27)(2) x y^{2}} \\
& \left(\frac{5}{x}\right)(x)(x)(y) \sqrt[3]{2 x y^{2}}-x y(3) \sqrt[3]{2 x y^{2}} \\
& 5 x y \sqrt[3]{2 x y^{2}}-3 x y \sqrt[3]{2 x y^{2}} \\
& 2 x y \sqrt[3]{2 x y^{2}}
\end{aligned}
$$

Multiplying/Dividing Radicals

When you multiply or divide a radical you must multiply or divide the coefficients separately from the terms inside the
radical sign
$\begin{aligned} & \text { Ex: } \begin{aligned} 2 \sqrt{6} & \\ & =10 \sqrt{18} \\ & =10 \sqrt{9 \cdot 2} \\ & =(10)(3) \sqrt{2} \\ & =30 \sqrt{2} \\ (2 \sqrt{3}-3 \sqrt{2})(2 \sqrt{3} & +\sqrt{2})\end{aligned} \\ &=\end{aligned}$
First $\quad(2 \sqrt{3})(2 \sqrt{3})+2 \sqrt{3} \sqrt{2}-(3 \sqrt{2})(2 \sqrt{3})-3 \sqrt{2} \sqrt{2}$
$\begin{aligned}-3 \sqrt{2 x} \cdot 4 \sqrt{3 x} & =-12 \sqrt{6 x^{2}} \\ & =-\underline{=}\end{aligned}$
$\begin{aligned} & \text { Souter } \\ & \text { Omer } \\ & \text { Last }\end{aligned} 4 \sqrt{9}+2 \sqrt{6}-6 \sqrt{6}-3 \sqrt{4}$
last $4 \cdot 3+(-4 \sqrt{6})-3 \cdot 2$

$$
\begin{aligned}
& 12-4 \sqrt{6}-6=6-4 \sqrt{6} \\
& \begin{aligned}
\frac{\sqrt{x^{3}}}{\sqrt[3]{x}}=\frac{x^{\frac{3}{2}}}{x^{1 / 3}} & =x^{\frac{3}{2}-\frac{1}{3}} & & \frac{4 \sqrt{5 x}}{\sqrt[4]{10 x^{3}}}
\end{aligned}=\sqrt[4]{\frac{5 x}{10 x^{3}}} \\
& \begin{array}{l}
=x^{\frac{9}{6}-\frac{2}{6}} \\
=x^{7 / 6} \\
=\sqrt[6]{x^{7}}
\end{array} \\
& 3 \quad 1=\frac{3}{-7} \frac{(2+\sqrt{3})}{1-91} \\
& =\frac{1}{\sqrt[4]{2 x^{2}}} \sqrt[4]{2 x^{2}} \\
& \begin{array}{l}
=\frac{\sqrt[4]{2 x^{2}}}{\sqrt[4]{4 x^{4}}}\left(\frac{\sqrt[4]{4}}{\sqrt[4]{4}}\right) \\
=\frac{\sqrt[4]{8 x^{2}}}{\sqrt[4]{16 x^{4}}}
\end{array} \\
& =\frac{\sqrt[4]{8 x^{2}}}{2 x}
\end{aligned}
$$

$$
\begin{aligned}
(\sqrt{x}-2)^{2} & =(\sqrt{x}-2)(\sqrt{x}-2) \\
& =\sqrt{x} \sqrt{x}-2 \sqrt{x}-2 \sqrt{x}+4 \\
& =x-4 \sqrt{x}+4
\end{aligned}
$$

$$
\begin{aligned}
& \frac{3}{2-\sqrt{5}}=\frac{3}{(2-\sqrt{5})} \frac{(2+\sqrt{5})}{(2+\sqrt{5})} \\
& =\frac{\sqrt[4]{8 x^{2}}}{2 x} \\
& \sqrt[3]{\frac{2}{y}}=\frac{\sqrt[3]{2}}{\sqrt[3]{y}} \cdot \frac{\sqrt[3]{y^{2}}}{\sqrt[3]{y^{2}}} \\
& =\frac{6+3 \sqrt{5}}{4-5} \\
& =-6-3 \sqrt{5} \\
& \frac{\sqrt{a}+\sqrt{2 b}}{\sqrt{a}-\sqrt{2 b}}=\frac{(\sqrt{a}+\sqrt{2 b})}{(\sqrt{a}-\sqrt{2 b})(\sqrt{a}+\sqrt{2 b})} \\
& =\frac{(\sqrt{a}+\sqrt{2 b})^{2}}{a+\sqrt{2 / a b}-\sqrt{2 a b}-2 b} \\
& =\left|\frac{(\sqrt{a}+\sqrt{2 b})^{2}}{a-2 b}\right| \\
& (\sqrt{a}+\sqrt{2 b})(\sqrt{a}+\sqrt{2 b})=a+\sqrt{2 a b}+\sqrt{2 a b}+2 b \\
& =a+2 \sqrt{2 a b}+2 b
\end{aligned}
$$

