Biology 12 January 2002 Provincial Examination

Answer Key / Scoring Guide

CURRICULUM:

	Organizers	Sub-Organizers
1.	Cell Biology	A, B, C, D
2.	Cell Processes and Applications	E, F, G, H
3.	Human Biology	I, J, K, L, M, N, O, P

Part A: Multiple Choice

Q	K	С	S	CO	PLO	Q	K	С	S	CO	PLO
1.	С	U	1	1	A1, 3	26.	С	Н	1	3	I7; J12
2.	С	Н	1	1	A1, 2, 3	27.	D	U	1	3	I9, 1
3.	D	Н	1	1, 3	A1; O2; P4	28.	А	U	1	3	I9
4.	С	U	1	1	B2	29.	А	U	1	3	J1
5.	В	Н	1	1, 2	C1, A1; E1	30.	D	U	1	3	J2
6.	С	U	1	1, 3	C1, 2, 4; I2	31.	С	Н	1	3	J2, 6
7.	В	U	1	1	C3	32.	А	U	1	3	K6, 1
8.	D	Н	1	1	C5	33.	В	Κ	1	3	L2
9.	В	U	1	1	C11	34.	В	U	1	3	L1
10.	D	U	1	1	D1	35.	В	U	1	3	L5, 4
11.	В	U	1	1	D2	36.	С	Н	1	3	L7, 8
12.	А	Κ	1	2	F1	37.	С	U	1	3	L8
13.	В	Κ	1	2	F3, 4	38.	А	Н	1	3	L8; J5
14.	С	Н	1	2, 1	F3, 4, 5; D1	39.	В	U	1	3	M3
15.	С	U	1	2	G1, 3	40.	DE	LEI	ΓЕΟ		
16.	В	Κ	1	2	H1	41.	D	Κ	1	3	N4
17.	В	U	1	2	H2	42.	D	Κ	1	3	O1, 2
18.	В	U	1	2	H1, 6	43.	D	U	1	3	O2
19.	D	U	1	2	H1, 6	44.	В	Н	1	3	O2
20.	В	Κ	1	2	H4	45.	С	U	1	3	O4, 5
21.	С	Κ	1	3	I1	46.	С	Κ	1	3	P1
22.	D	U	1	3	I1	47.	С	Κ	1	3	P4
23.	А	U	1	3	01	48.	В	U	1	3	P5
24.	D	Κ	1	3	I5	49.	В	Κ	1	3	P7
25.	А	Κ	1	3	I6	50.	В	Н	1	3	P10, 9

Multiple Choice = 50 marks

Part B: Written Response

Q	В	С	S	CO	PLO
1.	1	Κ	4	1	D3, 4; A1
2.	2	U	4	2	E1
3.	3	U	6	2	G3, 7
4.	4	U	6	1, 3	B3; I1, 9; P3, 7
5.	5	Κ	6	3	J 9
6.	6	Н	4	3	K1, 4
7.	7	U	5	3	M5, 6
8.	8	U	2	3	M8
9.	9	U	7	3	O2, 4, 5
10.	10	U	6	3	P3, 1

Written Response = 50 marks

Multiple Choice = 50 (50 questions) Written Response = 50 (10 questions) EXAMINATION TOTAL = 100 marks

LEGEND:Q = Question NumberB = Score Box NumberS = ScoreK = Keyed ResponseC = Cognitive LevelCO = Curriculum OrganizerPLO = Prescribed Learning Outcome

PART B: WRITTEN RESPONSE

Value: 50 marks

Suggested Time: 75 minutes

1. a) Define recombinant DNA.	(1 mark)
-------------------------------	----------

• DNA having genes from two different sources / cells / organisms / species. (1 mark)

b) Give two uses of recombinant DNA.		(2 marl
• producing vaccines / antibodies / antibiotics]	
 determining sex of the fetus 		
 diagnosis of infections and genetic diseases 	any two for	
• production of human proteins (e.g., insulin and growth hormone, interferon)	1 mark each	

• genetically-modified organisms

• improving crops / livestock for superior yields

Note:

Did not accept DNA fingerprinting / medicine / biotechnology.

c) In which organelle of a human cell would recombinant DNA be found?	(1 mark)

- either one for • nucleus
- mitochondria

1 mark

2.	Give a role of each of the following nucleic acids in the production of an enzyme.
	(4 marks: 1 mark each)

DNA:

- Contains sequence of bases that codes for the enzyme.
- Contains triplet code / blueprint / recipe / genetic code.
- Transcription.
- Produces mRNA.

any one for 1 mark

mRNA:	
 Transcribes DNA sequence A=U, G=C and travels to the site of enzyme production in the cytoplasm. Involved in translation. Carries triplet code / genetic code / codon from nucleus to ribosome / endoplasmic reticulum. 	any one for 1 mark

rRNA:

 Involved in translation as a component of ribosomes (along with protein). Attaches to tRNA / mRNA. Baada mBNA 	any one for 1 mark	
 Reads mRNA. Site of codon / anticodon matching. 		

tRNA:

 Carries specific amino acids to rRNA. Translation. Attaches to ribosome / rRNA. Contains anticodon. Matches mRNA codon. 	any one for 1 mark
---	-----------------------

3. In an experiment, 10 cubes of potato each weighing 10 grams and cut from the same potato were placed in 10 different numbered beakers. Each beaker contained a different concentration of sucrose solution as shown in the table below. After 24 hours, the potato cubes were removed, blotted dry and their weights entered into the data table.

Beaker	Concentration of Sucrose (%)	Weight of Potato Cube After 24 Hours (grams)	Percent Change in Mass (%)
1	0.0	13.4	34
2	0.5	12.5	25
3	1.0	11.2	12
4	1.5	10.3	3
5	2.0	9.2	-8
6	2.5	8.5	-15
7	3.0	8.0	-20
8	3.5	7.7	-23
9	4.0	7.5	-25
10	4.5	7.4	-26

a) Why were all the pieces cut from the same potato?

• to ensure consistent results

- as a control (same amount of solute)
- different potatoes may contain different quantities of water and solutes and therefore gain or lose more or less water by osmosis

any one for 1 mark (1 mark)

b) Graph the data that compares the concentration of sucrose to the percent change in mass. (2 marks: 1 mark for plotting points; 1 mark for drawing line)

(%)

Mark distribution:

1 mark for plotting the points correctly 1 mark for drawing the line

c) Use your graph to estimate at what point the concentration of sucrose in the potato is equal to the sucrose concentration in the beaker. (1 mark)

• accept a range of 1.5 to 1.9 (1 mark)

d) Explain why some of the potato cubes gained mass.	(2 marks)
• Water moved into the cells by osmosis. (1 mark)	
AND	
• The potato cytoplasm has a higher sucrose concentration.]
• The potato cubes were in a hypotonic solution.	any one for
• The potato cytoplasm was hypertonic to the surrounding solution.	1 mark
• The solution had a lower solute concentration.	J

4.	 For each of the following, indicate whether the optimum pH is acidic, basic or neutral and explain why that pH is needed for normal functions. (6 marks: 1 mark each for optimum pH; 1 mark each for explanation) 			
	stomach:			
	Optimum pH:• acidic• between 2.0 and 3.0/ l markNote:any pH less than 7.0 accepted			
	Explanation: acid environment kills bacteria acid environment needed to convert pepsinogen into pepsin 			
small intestine:				
	Optimum pH:• basic• alkaline• between 7.5 and 9.0Note:any pH greater than 7.0 accepted			
	 Explanation: neutralizes acid chyme alkaline environment needed for optimum enzyme function for any enzyme activated in the small intestine 			
	seminal fluid:			
	Optimum pH: • basic either one for • alkaline 1 mark			
	Explanation:counteracts acidity of the vaginaeither one for			

• sperm are more viable in a basic solution 1 mark

(6 marks: 1 mark each)

	Red Blood Cells	Platelets
Structural Description	 no nuclei OR biconcave disks OR 	 cell fragments OR シンズ
Function	• to carry oxygen, hydrogen ions and carbon dioxide	• to initiate clotting
Site of Production	 bone marrow OR stem cells 	 bone marrow OR mega karyocytes

(2 mai
o for ceach
(2 mai
(2 mai
(2 mai

• An increased red blood cell concentration means greater oxygen delivery, and fewer heart beats are required.

terminal end bulb
presynaptic membrane / axon

Structure **Y**:

- postsynaptic membrane
- dendrite / cell body / muscle cell
- gland
- effector

any one for 1 mark b) Identify the substance stored and released by structure Z and describe its function. (2 marks: 1 mark for substance; 1 mark for function)

] either one for

1 mark

Substance:

- neurotransmitter
- name of a specific neurotransmitter

Function:

- diffuse across the synapse and fit into receptor sites
- cause depolarization of the postsynaptic membrane which continues the nerve impulse
- cause the sodium gates to open
- cause hyperpolarization
- transport impulse
- excitatory effects
- inhibitory effects

any one for 1 mark

c) Draw an arrow on the diagram above to indicate the direction of the nerve impulse.

(1 mark)

• relay neuron

	any one for
	1 mark
J	

b) What is the function of structure Y ?	(1 mark)
 receive sensory information from the external environment initiates the electrical impulse 1 mage 	ne for ark

	X
carrier proteins:	
• Specific carriers actively transport amino acids / glucose / p histamines / bicarbonate ion / creatinine out of the filtrate.	enicillin / (1 mark)
peritubular capillary network:	
 Returns water and nutrients entering the nephron to the circulatory system. Excretion of wastes. 	either one for 1 mark

aldosterone:

- Causes re-absorption of sodium ions increasing blood plasma levels.
- Causes excretion of potassium ions.
- Promotes water reabsorption.

any one for 1 mark

10. Identify **three** components of seminal fluid and give **one** function of each component. (6 marks: 1 mark each for name; 1 mark each for function)

Component	Function
• bicarbonate ion (HCO ₃ ⁻)	 to neutralize the acidity of the vagina OR buffers acidic vagina
 sugar (i.e., glucose / fructose) OR nutrients OR carbohydrates 	 for energy OR for the production of ATP required for propulsion
• prostaglandins	• to stimulate uterine contractions to propel the sperm to the oviduct
• mucus	 to lubricate OR protect sperm
• water	 to provide a medium for sperm to swim in OR to lubricate
 amino acids OR proteins 	• coagulation in female reproductive tract
• sperm	 carries chromosomes OR fertilizes egg

END OF KEY