1.3 - Converting Between Imperial and SI

February 5, 2017
9:06 PM

Now that we have learned how to convert with in a measuring system, we are going to learn how to convert between Measuring systems.

Look at your ruler and see if you can create an equivalency relation for inches and centimeters.

Actual Size Ruler

$l_{\text {in }}=2.54 \mathrm{~cm}$

These are the accepted conversations between Imperial and SI units. They should also be found in your yellow formula sheets.

Examples:
Convert the following
4.5 in to cm

$$
\begin{aligned}
& 1.5 i / \times \frac{2.54 \mathrm{~cm}}{1 \mathrm{ig}}=11.43 \mathrm{~cm}: 4.5 i \times \frac{1 \mathrm{~cm}=0.3937 \mathrm{in}}{0.3937 \mathrm{in}}=11.43 \mathrm{~cm} \\
&
\end{aligned}
$$

13 mm to in

$$
I_{m m}=0.0394 \mathrm{in}
$$

$$
13 \mathrm{~mm} \times \frac{0.0394 \mathrm{in}}{1 \mathrm{~mm}}=0.512 \mathrm{in}
$$

5.8 km to yd

$$
\begin{aligned}
& 1 \mathrm{~km}=0.6214 \mathrm{mi} \\
& \mathrm{k} \quad \mathrm{mi} \quad 1 \mathrm{mi}=1760 \mathrm{yd}
\end{aligned}
$$

$$
5.8 \mathrm{~km} \times \frac{0.014 \mathrm{ml}}{1 \mathrm{~km}}=3.604 \mathrm{mi}
$$

$$
3.604 \mathrm{~m} \times \frac{1760 \mathrm{yd}}{\operatorname{lng}}=6343 \mathrm{yd}
$$

Mr. Horncastle likes to use old bottles to store his loose change. Which coins fit in the bottles?

Mr. Horncastle has decided to retie his kitchen. The stone he wants to use is 30 cm by 30 cm and he wants to use a $1 / 4$ " grout line. If his kitchen floor space is $10 \mathrm{ft} x 8 \mathrm{ft}$. How many tiles will he need? (assuming he doesn't break any, which he most certainly will, at least 10% of the tiles)

$$
1 \mathrm{in}=2.54 \mathrm{~cm}
$$

$$
30 \mathrm{cos} \times \frac{1 \mathrm{in}}{2.54 \mathrm{~cm}}=11.81 \mathrm{in}
$$

$$
\begin{aligned}
& 1 \mathrm{lin}=0.0394 \mathrm{~mm} \\
& 26.5 \mathrm{gm} \times \frac{\operatorname{lin}}{0.0394 \mathrm{~mm}}=\underline{1.04 \mathrm{in}} \\
& 1 m=3.281 f 1 \\
& 0.023 \% \times \frac{3.281 f t}{1 g t}=0.075463 f t \\
& 1 f t=r i n \\
& 0.0754636 \in \times \frac{12 \text { in }}{1 f t}=0.906 \text { in }
\end{aligned}
$$

$$
\begin{aligned}
& \text { The Bottles opening is } 0.023 \mathrm{~m} .=0.906 \mathrm{in}
\end{aligned}
$$

$$
\begin{aligned}
& 1 \mathrm{~km}=0.6214 \mathrm{mi} \\
& \text {. } 1_{\text {mi }}=1760 \text { y } \\
& \mathrm{Kmm}_{\mathrm{k}_{\mathrm{m}}=0.6214_{m_{i}}}^{\mathrm{mi}^{i} \mathrm{mmi}^{2}} y d
\end{aligned}
$$

$$
\begin{aligned}
& 10 \text { tt }=120 \mathrm{in} \\
& 1 f t=12 i n \\
& 10 \mathrm{ft} \times \frac{12 \mathrm{in}}{1 \mathrm{ft}}=\frac{120 \mathrm{in}}{=} \\
& \text { ".81in } \\
& 8 \mathrm{ft} \times \frac{12 \mathrm{in}}{1 \mathrm{ft}}=96 \mathrm{in} \\
& \frac{120 \mathrm{in}}{12.06 \mathrm{in}}=9.95 \text { tiles }=10 \text { tiles } \\
& \frac{96 \mathrm{in}}{12.06 \mathrm{in}}=7.96 \text { tiks }=8 \text { tiles } \\
& \text { Total tiks }=10 \times 8=80 \text { tikes }
\end{aligned}
$$

