Dime Quarter
业沙沙 11）a）
Dime

$$
\frac{2.4}{1.7}=1.4
$$

This tells us that the Quarter is 1.4 times the Size of the Dime．
b）Quarter

$$
\begin{aligned}
2.4 \times \frac{d}{2.4} & =1.4 \times 2.4 \\
d & =1.4 \times 2.4 \\
d & =3.4 \mathrm{~cm}
\end{aligned}
$$

Id when measured is 2.6 cm
The ratio does not apply
13

b）

$$
\begin{aligned}
C_{E} & =2 \pi r_{E} \\
& =(2)(\pi)(6380) \\
C_{E} & =40,086 \mathrm{~km}
\end{aligned}
$$

C）

$$
\begin{aligned}
r & =r_{E}+r_{S} \\
& =35800+6380 \\
r & =42180 \\
C_{S} & =2 \pi r \\
& =2 \pi(42180) \\
& =265,25 \mathrm{~km}
\end{aligned}
$$

d）

$$
\begin{aligned}
V=\frac{d}{t} \quad V_{E} & =\frac{C_{E}}{24 \mathrm{hr}} \\
& =\frac{40086}{24} \\
& =\frac{1670 \mathrm{~km} / \mathrm{hc}}{\bar{S}} \\
V_{S} & =\frac{C_{S}}{24 \mathrm{hr}} \\
& =\frac{265025 \mathrm{~km}}{24 \mathrm{hr}} \\
& =11043 \mathrm{~km} / \mathrm{hr}
\end{aligned}
$$

15）

$$
\begin{aligned}
\text { focal length } & =45 \mathrm{~mm} \\
\text { Altitute } & =305 \mathrm{~m} \\
\text { Length of Crater (Phot) })=35 \mathrm{~mm} \quad & \quad S F=\frac{305 \mathrm{~m}}{45 \mathrm{~mm}} \\
& 35 \mathrm{~mm}=305 \mathrm{~m} \\
&
\end{aligned}
$$

$$
35 \mathrm{~mm} \times \frac{305 \mathrm{~m}}{45 \mathrm{~mm}}=237 \mathrm{~m}
$$

$\frac{1.2}{13} 215=13$

15

$$
1 A U=92955887.6 \mathrm{mi}
$$

a)
b)

$$
\begin{aligned}
& 0.1018 \mathrm{AV} \times \frac{92955887.6}{1 \mathrm{AU}}=9462909.4 \mathrm{mi} \\
& \begin{array}{c}
1.315 \mathrm{AO} \times \frac{92955887.6 \mathrm{mi}}{1 A O}
\end{array}=122236992.2 \mathrm{mi} \\
& \frac{122236992.2}{9462909.4} \\
& \frac{112774083 \mathrm{mi}}{}
\end{aligned}
$$

1.1 - Si Units

February 2, 2017
10:44 AM

SI Units (Système international d'unités)_the standard international system of units were created in the 1700's during the French Revolution.

This system uses predetermined prefixes that scale a measurement

Prefix	Scale factor (Scientific Notation)	Scale Factor	
n: nano	$\times 10^{-9}$	0.000000001	
$\mu:$ micro	$\times 10^{-6}$	0.000001	
m: mill	$\times 10^{-3}$	0.001	
c: cent	$\times 10^{-2}$	0.01	
d: deci	$\times 10^{-1}$	0.1	
da: ceca	$\times 10^{1}$	10	
h: hecta	$\times 10^{2}$	100	
k: kilo	$\times 10^{3}$	1000	
M: mega	$\times 10^{6}$	1000000	
G: giga	$\times 10^{9}$	1000000000	

Measuring Length
Lengths are always measured in meters. We use a prefix to help scale the measurement.

$$
\begin{aligned}
& 34 \mathrm{~km}=34(1000) \mathrm{m} \\
& 34,000 \mathrm{~m}
\end{aligned}
$$

$$
\begin{array}{ll}
540 \mathrm{~cm}=540(0.01) \mathrm{m} & 1 \\
5.4 \mathrm{~m} & 1 \mathrm{~m}=100 \mathrm{~cm} \\
& \quad 540 \mathrm{ch} \times \frac{1 \mathrm{~m}}{100 \mathrm{~cm}}=5.4 \mathrm{~m}
\end{array}
$$

$$
4678 \mathrm{~mm}=4678(0.001) \mathrm{m}
$$

$$
4.678 \mathrm{~m}
$$

$$
4679 \mathrm{~mm} \times \frac{1 \mathrm{~m}}{1000 \mathrm{~mm}}=4.678 \mathrm{~m}=1000 \mathrm{~mm}
$$

$k: 1000$
$0.56 \mathrm{~km}=0.56(1000) \mathrm{m}$
560 m

$$
\begin{array}{r}
C: 0.01 \\
1 \mathrm{~m}=100 \mathrm{~cm} \\
3 \mathrm{~cm} \times \frac{1 \mathrm{~m}}{100 \mathrm{~cm}}=0.03 \mathrm{~m}
\end{array}
$$

$$
1 \mathrm{~km}=1000 \mathrm{~m}
$$

0.56 kg

Mass in SI units is measured in grams

Equivalency Equations

Yesterday you created your own equivalency Equations.

We can do the same with our different SI units.
$1 \mathrm{~km}=1000 \mathrm{~m}$
$1 \mathrm{~m}=100 \mathrm{~cm}$
$1 \mathrm{~cm}=10 \mathrm{~mm}$

Etc.

We also use equivalency equations on maps

Referents: A referent is a personal measurement that you can use to make estimates.

The width of your pinky finger is approximately 1 cm
What would be some other referents?
$1 \mathrm{~mm} \simeq$ Thickness of a finger nail

1 cm ~ width of the pinky finger
$1 \mathrm{~m} \sim$ large Step
$1 \mathrm{~km} \simeq 3$ city blocks

Using your referents: determine the following
The height of your text book (in cm) $=20 \sim 26 \mathrm{~cm}$

The perimeter of the classroom $($ in $m)=34 \sim 42 m$

Reading a ruler

Reading a Caliper

* 11

四

Chapter 1 Page 7

1.2 - Imperial Measurements

February 2, $2017 \quad$ 4:14 PM

Imperial Measurements came into being in 1824. They were a standardized version of the Winchester standard units of the 15th century.

Lengths

Inch (in or ")	12 inches = 1 foot
Feet (ft. or ')	3 feet = 1 yard
Yard (yd)	1760 yards = 1 mile
Mile (mi)	$5280 f t=1$ mi

$$
\begin{aligned}
1760 \text { yards } & =1 \text { mile } \\
1760(3 \mathrm{feet}) & =1 \text { mile } \\
5280 \mathrm{ft} & =1 \mathrm{mi}
\end{aligned}
$$

Examples: Do the following conversions
8 ft to inches

$$
8 f+x \frac{12 i n}{1 f t}
$$

12 in $=1 \mathrm{ft}=96$ in
62 yd to miles

234 yd to feet

$$
3 \mathrm{ft}=1 \mathrm{yd} \quad 234 \mathrm{yt}^{2} \times \frac{3 \mathrm{ft}}{1 \mathrm{yf}^{\prime}}=702 \mathrm{ft}
$$

5.5 feet to inches

$$
12 \mathrm{in}=1 \mathrm{ft}
$$

$$
5.55 \times \frac{12 \mathrm{in}}{1 f t}=66 \mathrm{in}
$$

3.5 yards to inches
$3 \mathrm{ft}=1 \mathrm{yd}$
$12 \mathrm{in}=1 \mathrm{ft}$

$$
\begin{aligned}
3.5 y 8 \times \frac{3 \mathrm{ft}^{2}}{1 y \mathrm{t}} \times \frac{12 \mathrm{in}}{1 \mathrm{ft}} & \equiv 3.5 \times 3 \times 12 \mathrm{in} \\
& =126 \mathrm{in}
\end{aligned}
$$

Using imperial Units on a Ruler

Referents

Inch: width of your thumb

Foot: Approximate out how many of your feet equal 1 imperial foot
1 large foot
I Buchan Size
foot
You try:
Estimate the width of your text book using your thumb.
Estimate the length of your desk using your feet.

$$
\sim 5 \mathrm{ft}
$$

Examples

Mr. Horncastles Westy, has wheels that have a diameter of 2.083 ft .
a) What is the radius of these wheels in inches

$$
\begin{array}{cl}
d=2 r & 12: n=1 \mathrm{ft} \\
\frac{2.083 \mathrm{ft}}{2}=\frac{2 r}{2} & 1.0415 \mathrm{ft} \times \frac{12 \mathrm{in}}{1 \mathrm{ft}}=12.5 \mathrm{in}
\end{array}
$$

$$
1.0415 \mathrm{ft}=r
$$

b) What is the circumference in Yards?

$$
6.54 f t \times 1 \mathrm{gd}
$$

b) What is the circumference in Yards?

$$
\begin{aligned}
& \text { C is the circumference in Yards? } \quad 2 r=d=2.083 \mathrm{ft} \quad 6.54 \mathrm{ft} \times \frac{1 y d}{3 \mathrm{ft}} \\
& \\
& =\pi(2 r) \quad \mid y d=3 \mathrm{fl} \\
& \\
& =\pi(2.083 \mathrm{ft}) \quad
\end{aligned}
$$

C) How many times will the wheel fully rotate in 1 mile of driving?

$$
I_{\mathrm{mi}}=1760 y d \quad \frac{1760 y d}{2.18 y d}=\underline{807 \text { full rotations }}
$$

1.3 - Converting Between Imperial and SI

February 5, 2017
9:06 PM

Now that we have learned how to convert with in a measuring system, we are going to learn how to convert between Measuring systems.

Look at your ruler and see if you can create an equivalency relation for inches and centimeters.

Actual Size Ruler

$l_{\text {in }}=2.54 \mathrm{~cm}$

These are the accepted conversations between Imperial and SI units. They should also be found in your yellow formula sheets.

Examples:
Convert the following
4.5 in to cm

$$
\begin{array}{ll}
\frac{1 \mathrm{in}=2.54 \mathrm{~cm}}{4.5 i} \times \frac{2.54 \mathrm{~cm}}{1 \mathrm{ig}}=11.43 \mathrm{~cm}: 4.5 氵 \times \frac{1 \mathrm{~cm}=0.3937 \mathrm{in}}{0.3937} \mathrm{in}=11.43 \mathrm{~cm}
\end{array}
$$

13 mm to in

$$
I_{m m}=0.0394 \mathrm{in}
$$

$$
13 \mathrm{~mm} \times \frac{0.0394 \mathrm{in}}{1 \mathrm{~mm}}=0.512 \mathrm{in}
$$

5.8 km to yd

$$
1 \mathrm{~km}_{\mathrm{m}}^{\mathrm{k}}=\underset{\mathrm{mi} \mathrm{lmi}_{1.1}^{0.6214 \mathrm{mi}} \quad 1760 \mathrm{~d}}{ } \quad 5.8 \mathrm{~km} \times \frac{0.6214 \mathrm{mi}}{1 \mathrm{~km}}=3.604 \mathrm{mi}
$$

$$
5.8 \mathrm{~km} \times \frac{0.014 \mathrm{ml}}{1 \mathrm{~km}}=3.604 \mathrm{mi}
$$

$$
3.604 \mathrm{~m} \times \frac{1760 \mathrm{yd}}{\operatorname{lng}}=6343 \mathrm{yd}
$$

Mr. Horncastle likes to use old bottles to store his loose change. Which coins fit in the bottles?

Mr. Horncastle has decided to retie his kitchen. The stone he wants to use is 30 cm by 30 cm and he wants to use a $1 / 4$ " grout line. If his kitchen floor space is $10 \mathrm{ft} x 8 \mathrm{ft}$. How many tiles will he need? (assuming he doesn't break any, which he most certainly will, at least 10% of the tiles)

$$
1 \mathrm{in}=2.54 \mathrm{~cm}
$$

$$
30 \mathrm{cos} \times \frac{1 \mathrm{in}}{2.54 \mathrm{~cm}}=11.81 \mathrm{in}
$$

$$
\begin{aligned}
& 1 \mathrm{n}=0.0394 \mathrm{~mm} \\
& 26.5 \mathrm{gm} \times \frac{\operatorname{lin}}{0.0394 \mathrm{~mm}}=\underline{1.04 \mathrm{in}} \\
& 1 m=3.281 f 1 \\
& 0.023 \% \times \frac{3.281 f t}{1 g t}=0.075463 f t \\
& 1 f t=r i n \\
& 0.0754636 \in \times \frac{12 \mathrm{in}}{1 f 6}=0.906 \mathrm{in}
\end{aligned}
$$

$$
\begin{aligned}
& \text { The Bottles opening is } 0.023 \mathrm{~m} .=0.906 \mathrm{in}
\end{aligned}
$$

$$
\begin{aligned}
& 1 \mathrm{~km}=0.6214 \mathrm{mi} \\
& \text {. } 1_{\text {mi }}=1760 \text { y } \\
& \mathrm{Kmm}_{\mathrm{k}_{\mathrm{m}}=0.6214_{m_{i}}}^{\mathrm{mi}^{i} \mathrm{mmi}^{2}} y d
\end{aligned}
$$

$$
\begin{aligned}
& 10 \text { Ot }=120 \mathrm{in} \\
& 1 f t=12 i n \\
& 10 \mathrm{ft} \times \frac{12 \mathrm{in}}{1 \mathrm{ft}}=\frac{120 \mathrm{in}}{=} \\
& \text { ".81in } \\
& 8 \mathrm{ft} \times \frac{12 \mathrm{in}}{1 \mathrm{ft}}=96 \mathrm{in} \\
& \frac{120 \mathrm{in}}{12.06 \mathrm{in}}=9.95 \text { tiles }=10 \text { tiles } \\
& \frac{96 \mathrm{in}}{12.06 \mathrm{in}}=7.96 \text { tiks }=8 \text { tiles } \\
& \text { Total tiks }=10 \times 8=80 \text { tikes }
\end{aligned}
$$

Chapter 1 Quiz
 February 8, 2017 10:09 AM

1. A student measures his stride to be $23 / 4 \mathrm{ft}$ long

Calipers

Metric Calipers
Fixed Scale (lm divisions): Read the value on the fixed scale just to the left of the sliding scale zero Sliding scale ($\mathbf{0 . 1} \mathbf{m m}$ divisions): Read the value on the sliding scale that matches up with a line on the fixed scale

Combine these numbers together to get your accurate reading.

$$
\begin{aligned}
& \text { ether to get your accurate reading. } 6.2 \text { on the sliding Scale } \\
& 2.8 \mathrm{~cm}
\end{aligned}
$$

Task: Measure the width of a pencil, the thickness of your text book, and the widthoryour finger.

Pencil:

$$
\begin{array}{ll}
7 \mathrm{~mm} & 6.4 \mathrm{~mm} \\
11.55 \mathrm{~mm} & 9.0 \mathrm{~mm}
\end{array}
$$

$$
11.55 \mathrm{~mm} \quad 9.0 \mathrm{~mm}
$$

Textbook:

$$
\begin{array}{ll}
27.75 \mathrm{~mm} & 30 \mathrm{~mm} \\
27.5 \mathrm{~mm} & 29.3 \mathrm{~mm}
\end{array}
$$

Finger:

$$
\begin{array}{ll}
13.4 \mathrm{~mm} & 16.5 \mathrm{~mm} \\
15.0 \mathrm{~mm} & 6.2 \mathrm{~mm}
\end{array}
$$

Imperial Calipers

Fixed scale (0.1in divisions): Read the value on the fixed scale that is just to the left of the sliding scale zero

Sliding Scale (0.01in divisions): Read the value on the sliding scale that matches up with a line on the fixed scale.

Combine these numbers together to get your accurate reading.

Example:

$$
\begin{aligned}
& 3.237 \\
& 3.25 \\
& \text { 2. } 67 \\
& 2.69 \\
& +\quad 17 \\
& 2.68
\end{aligned}
$$

HW: Caliper Questions you skipped from 1.1 and 1.2 HW. Chapter Review pg. 48 Questions: 1-13 Quiz tomorrow on chapter 1

