Incline Plane

A projectile is fired at the base of a hill. The hill slopes up at an angle of 30 degrees. If the projectile is fired with a velocity of $45 \mathrm{~m} / \mathrm{s}$ and at an angle of 60 degrees, then how far up the slope will the projectile hit?

$$
\begin{aligned}
& V_{y_{i}}=45 \sin 60 \\
& V_{x}=45 \cos 60
\end{aligned}
$$

$$
\begin{aligned}
& d y=d \sin 30 \\
& d x=d \cos 30
\end{aligned}
$$

$$
\begin{aligned}
& \text { Vertical } \\
& V_{y_{i}}=45 \sin 60 \\
& V_{y f}= \\
& d_{y}=d \sin 30 \\
& a=-9.8 \mathrm{~m} / \mathrm{s}^{2} \\
& t=
\end{aligned}
$$

$$
d y=V_{y_{i}} t+\frac{1}{2} a t^{2}
$$

$$
d \sin 30=45 \sin 60 t-4.9 t^{2} E_{2}
$$

$$
\begin{aligned}
& d \sin 30=45 \sin 60\left(\frac{d \cos 30}{45 \cos 60}\right)-4.9\left(\frac{d \cos 30}{45 \cos 60}\right)^{2} \\
& 0.5 d=1.5 d-0.20
\end{aligned}
$$

$$
\begin{gathered}
0.5 d=1.5 d-0.007259259 d^{2} \\
-1.5 d
\end{gathered}
$$

$$
+\not \angle=+0.007259259 d^{2}
$$

$$
\frac{1}{\left(a_{1}+a\right.}=\frac{0.007259259 d}{0.007259259}
$$

$$
\begin{aligned}
& V_{x}=45 \cos 60 \\
& d x=d \cos 30 \\
& t= \\
& d x=V_{x} \cdot t \\
& t=\frac{d x}{V_{x}} \\
& t=\frac{d \cos 30}{45 \cos 60} \\
& \text { Eq }
\end{aligned}
$$

$$
138 m=d
$$

