2.1 - Units of Area and Volume

February 14, 2017 10:34 AM

Area
The paintable space
Units: Square Units, units ${ }^{2}$
Example: $\mathrm{m}^{2}, \mathrm{~km}^{2}, \mathrm{~cm}^{2}, \mathrm{ft}^{2}, \mathrm{ft}^{2}, \mathrm{in}^{2}$

Volume

The fillable space
Units: Cubic Units, units ${ }^{3}$
Example: $\mathrm{m}^{3}, \mathrm{~km}^{3}, \mathrm{~cm}^{3}, \mathrm{ft}^{3}, \mathrm{ft}^{3}, \mathrm{in}^{3}$

Area and Volume Formulas

Figure 1-5. A rectangle.

The only difference between these units and those we have been using before is the little ${ }^{2}$ or ${ }^{3}$. These are exponents and signify how many of each unit is present.
m^{3} : READ "meters cubed" or "Cubic meters"
$\mathrm{m}^{\mathbf{3}}=(\mathrm{m})(\mathrm{m})(\mathrm{m})$
in $^{2}:$ READ "inches squared" or "square inches"
$\mathbf{I n}^{\mathbf{2}}=(\mathrm{in})(\mathrm{in})$

Let's do some conversions with these units.
Examples:
Calculate the Area in square feet and square yards of a rectangle that is 15 in by 23 in .

$$
\begin{aligned}
\text { Area } & =15 \mathrm{in} \times 23 \mathrm{in} \\
& =345 \mathrm{in}^{2} \\
& =345(\mathrm{ig})(\mathrm{ji}) \times \frac{1 \mathrm{ft}}{12 \mathrm{i}} \times \frac{1 \mathrm{ft}}{12 i k} \\
& =345=\frac{1 \mathrm{i}}{3 \mathrm{ft}} \times \frac{1 \mathrm{in}}{3 \mathrm{ft}}
\end{aligned}
$$

$$
=\frac{345 f t^{2}}{(12)(12)}
$$

$$
=2.4 f t^{2}
$$

* when converting
Area's do your
A

Corvesjons
Calculate the Volume of a rectangular prism that is 5 m by 6 m by 11 m . Find the volume in cubic feet.

$$
\begin{aligned}
V & =L \times \omega \times h \quad I m=3.28 \mathrm{ft} \\
& =11 \times 6 \times 5 \\
V & =330 \mathrm{~m}^{3} \\
& =330(\mathrm{co})(\mathrm{ym})(\mathrm{f}) \times \frac{3.28 \mathrm{ft}}{1 \mathrm{f}} \times \frac{3.28 \mathrm{ft}}{1 / \mathrm{f}} \times \frac{3.28 \mathrm{ft}}{1 \mathrm{At}} \\
& =330 \times(3.28)^{3} \mathrm{ft}^{3} \\
& =11645 \mathrm{ft}^{3}
\end{aligned}
$$

$$
=11645 \mathrm{ft}^{3}
$$

A cube (all side lengths equal) has a volume of $7.628 \mathrm{in}^{3}$. Calculate the length of one side in centimetres.

A unknown shape has an area of $607 \mathrm{~km}^{2}$. What is the area in square miles?

$$
\begin{array}{ll}
607 \mathrm{~km}^{2} & 1 \mathrm{mi}=1.609 \mathrm{~km} \\
607 \mathrm{k} / \mathrm{m} \times \mathrm{km} & \frac{1 \mathrm{mi}}{1.609 \mathrm{~kg}} \times \frac{1 \mathrm{mi}}{1.609 \mathrm{k} \mathrm{~h}}=234 \mathrm{mi}^{2}
\end{array}
$$

Other units for Area and Volume
Acres
1 Acre $=43560 \mathrm{ft}^{\mathbf{2}}$
Litres
1 Litre $=1000 \mathrm{~cm}^{3}$
Example: How many square feet are in 10 acres of land?

$$
10 \text { ages } \times \frac{43560 \mathrm{ft}^{2}}{\text { laces }}=\underline{=435600 \mathrm{ft}^{2} \quad \begin{array}{l}
\text { Only used our } \\
\text { conversion } \\
\text { formula once }
\end{array}}
$$

Example: How many cubic centimeters is a can of pop (350 mL).

$$
\text { remember } m=0.001 \quad 1 L=1000 \mathrm{~cm}^{3}
$$

$$
\begin{aligned}
350 \mathrm{~mL}= & (350)(0.001) \mathrm{L} \\
= & 0.350 \mathrm{~L} \\
& 0.350 \% \times \frac{1000 \mathrm{~cm}^{3}}{1 \mathrm{~V}}=350 \mathrm{~cm}^{3}
\end{aligned}
$$

only use our
once

$$
0.350 \% \times \frac{1000 \mathrm{~cm}^{3}}{1 \not K}=350 \mathrm{~cm}^{3}
$$

Homework
Ch2.1, Page 61, Q:1-11odd, 12

