Sample of Problems

September 17, 2015 2:05 PM

Constant Velocity Problems

These problems have no acceleration and therefore the velocity does not change.

Example:
A Car is travelling down the highway at a velocity of $90 \mathrm{~km} / \mathrm{hr}$. How far can it travel in 3.5 hrs?

$$
\begin{array}{rl}
r=90 \mathrm{~km} / \mathrm{hr} & d \\
t=3.5 \mathrm{hr} & =v . t \\
& =(90)(3.5) \\
& =315 \mathrm{~km}
\end{array}
$$

Acceleration Problems

In these problems an object is accelerating at a constant rate. You must use the following equations to solve these problems.

$a \neq 0$

$$
\begin{aligned}
& \vec{v}_{\text {ave }}=\frac{\vec{v}_{f}+\vec{v}_{i}}{2} \\
& \vec{d}=\vec{v}_{i} t+\frac{1}{2} \vec{a} t^{2}
\end{aligned}
$$

$$
\overrightarrow{v_{f}}=\overrightarrow{v_{i}}+\vec{a} t
$$

$$
{\overrightarrow{v_{f}}}^{2}={\overrightarrow{v_{i}}}^{2}+2 \vec{a} \vec{d}
$$

$$
\vec{d}=\frac{\overrightarrow{v_{f}}+\overrightarrow{v_{i}}}{2} t
$$

Draw a picture, list the variables you know and don't know. Then find the equations you need to use to solve the problem.

Example:

A spherical shark is thrown up in the air at $11 \mathrm{~m} / \mathrm{s}$.
a) How high is the shark after 7.2 seconds?

$$
\begin{array}{ll}
& d=V_{i} t+\frac{1}{2} a t^{2} \\
& d=11(7.2)-4.9(7.2)^{2} \\
\rightarrow V_{i}=11 \mathrm{~m} / \mathrm{s} & d=-174.8 \mathrm{~m} \\
V_{f}= & \\
\rightarrow a=-9.8 \mathrm{~m} / \mathrm{s}^{2} & \\
\rightarrow t=7.2 \mathrm{scc} & \\
\rightarrow d= &
\end{array}
$$

Projectile Motion - Basic

$$
\begin{aligned}
& V_{i}=11 \mathrm{~m} / \mathrm{s} \\
& V_{f}= \\
& a=-9.8 \\
& d=4 \mathrm{~m} \\
& t=
\end{aligned}
$$

$$
\begin{array}{rl}
d & =v_{i} t+\frac{1}{2} a t^{2} \\
4 & =11 t-4.9 t^{2} \\
4.9 t^{2}-11 t+4=0 \\
a & b=\frac{b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
t & =\frac{11 \pm \sqrt{(-11)^{2}-4(4.9)(4)}}{2(4.9)} \\
& =\frac{11 \pm 6.53}{9.8} \\
t=11+6.53 \\
t_{1}= & \quad 1.79 .8 \mathrm{sec} \\
=
\end{array}
$$

These problems use a combination of the previous. To solve these you must break up the motion into horizontal and vertical components. Then solve each by linking them together with time.

Example:
Mr. Mueller is throwing water balloons off a 12 m building. He wants to hit a group of Claremont students. If the he throws the balloons with an initial horizontal velocity of $7 \mathrm{~m} / \mathrm{s}$. Then where do the kids have to be for him to hit them?

12 m

Relative Motion

$$
\begin{aligned}
& d y=\sqrt{i} t+\frac{1}{2} a t^{2} \\
& -12=-4.9 t^{2} \\
& t^{2}=\frac{12}{4.9} \\
& t=\sqrt{12} / 4.9 \\
& t=1.56 \mathrm{sec} \\
& d=v . t \\
& =(7)(1.56) \\
& d=10.92 \mathrm{~m}
\end{aligned}
$$

Remember, we are on a planet that is orbiting around the sun at a rate of $108,000 \mathrm{~km} / \mathrm{hr}$. We choose to create a frame of reference that is moving at this speed so that we do not have to include it in our calculations.

In these problems we will choose a frame of reference that is moving at a constant speed with one of the objects. This allows us to simplify the problem into one of the previous three.

Example:
Mr. Horncastle is flying across the sky at a speed of $60 \mathrm{~m} / \mathrm{s}$. You are riding your bike towards him at a
rate of $9.0 \mathrm{~m} / \mathrm{s}$ and you are 77 m below him. He wants to drop a water balloon on you. When should he drop the water balloon.

Vertical balloon

$$
\begin{array}{ll}
v_{i}=0 \mathrm{~m} / \mathrm{s} & d=v_{i} \cdot f+\frac{1}{2} a t^{2} \\
v_{f}= & -77=-4.9 t^{2} \\
a=-9.8 \mathrm{~m} / \mathrm{s}^{2} & t=\sqrt{\frac{77}{4.9}} \\
d y=-77 \mathrm{~m} & t=3.96 \mathrm{se} \\
t= &
\end{array}
$$

Horizontal Bike

$$
\begin{aligned}
& r=69 \mathrm{~m} / \mathrm{s} \text { Leet } \\
& t=3.96 \mathrm{sec} \\
& d_{x}=
\end{aligned}
$$

The bike needs to be 274 m away from the balloon

