

$$
\begin{aligned}
& v_{y_{i}}=v_{i} \sin 61 \\
& v_{x}=v_{i} \cos 61
\end{aligned}
$$

$$
\frac{\sin \theta}{\cos \theta}=\operatorname{Tan} \theta
$$

$$
\begin{aligned}
& \text { Vertical } \\
& \rightarrow \quad v_{y_{i}}=V_{i} \sin 61 \\
& v_{y_{f}}= \\
& \rightarrow a=-9.8 \mathrm{~m} / \mathrm{s}^{2} \\
& \rightarrow \quad d y=17-2 \\
& =15 \mathrm{~m} \\
& \rightarrow t= \\
& \text { Hosizontal }(a=0) \\
& V_{x}=V_{i} \cos 61 \\
& d x=38 \mathrm{~m} \\
& t= \\
& d_{x}=v_{x} \cdot t \\
& t=\frac{38}{V_{i} \cos 61} \quad E_{q} \\
& d=v_{i} t+\frac{1}{2} a t^{2} \\
& 15=V_{i} \operatorname{Sin}(61) t-4.9 t^{2} \quad E_{82} \\
& 15=V_{1} \sin (61)\left[\frac{38}{y_{1} \cos 61}\right]-4.9\left[\frac{38}{V_{i} \cos 61}\right]^{2} \\
& 15=38 \tan (61)-4.9\left[\frac{38}{V_{i} \cos 61}\right]^{2} \\
& V_{i}^{2}(15-38 \tan 61)=\frac{(-4.9)(38)^{2}}{V_{i}^{2} \cos ^{2} 61} \times\left(V_{i}^{2}\right) \\
& \frac{V_{i}^{2}(15-38 \tan 61)}{15-38 \tan 61}=\frac{-(4.9)(38)^{2}}{\left(\cos ^{2} 61\right)(15-38 \tan 61)}
\end{aligned}
$$

$$
\begin{aligned}
V_{i}^{2} & =\frac{-(4.9)(38)^{2}}{\left[\cos ^{2}(61)\right][15-38 \tan 61]} \\
\sqrt{V_{i}^{2}} & =\sqrt{562} \\
V_{i} & =24 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Correction
\# 8

$$
d x=12 m
$$

