18. $5.3 \times 10^4 \,\mathrm{N}$ 19. No, the sack will rip. **20. a.** 1.2 m/s²; **b.** -0.63 m/s²; c. stopping, lower acceleration; d. scale reads less than 836 N, reads 836 N, then reads more than 836 N 21. 0.68 m/s² **22. a.** 4.9×10^2 ; **b.** 150 N. static friction; c. 49 N, sliding friction; **d.** $2.0 \times 10^2 \text{ N}$ 23. a. 10 N; b. 0.20 24. 1.5 m/s² 25. 4.8 m/s² **26. a.** 9.8 m/s^2 , up; **b.** 98 m/s, up; **c.** -49 N, down; **d.** $1.0 \times$ 10 s 27. a. Refer to Problems and Solutions Manual for Diagram. **b.** upward; **c.** 2.0 m/s² 28. a. 5.88 m/s²; b. 15.7 N **29. a.** 3.27 m/s²; **b.** 26.1 N ## Answers To PROBLEMS Complete solutions for all Chapter Review Problems can be found in the Problems and Solutions Manual accompanying this text. **1. a.** 45 m/s²; **b.** 3.9×10^4 N; c. 3.1×10^3 N; d. inertial mass 2. 33.02 m/s²; 163.0 m/s 3. No, the acceleration during the first half-second was 45 m/s2 (problem 1) and the acceleration for the full time was 33.02 m/s² (problem 2). 4. -5×10^3 N, upward **5.** $3.1 \times 10^3 \text{ N}$ **6.** $6.3 \times 10^3 \text{ N}$ **7.** 33 m **8. a.** 14 m/s; **b.** 3.2×10^3 N **9.** 6.6×10^{-25} m/s² **10.** -2.0 m/s^2 11. a. 95.0 kg; b. 929 N; c. 95.0 kg; d. 934 N; e. "mass-in" **12.** 250 kg **13.** 10.5 m/s², down **14.** -1.13×10^4 N, opposite direction of motion **15.** 0.255 **16.** 0.400 17. -1 m/s^2