18. $5.3 \times 10^4 \,\mathrm{N}$

19. No, the sack will rip.

20. a. 1.2 m/s²; **b.** -0.63 m/s²; c. stopping, lower acceleration; d. scale reads less than 836 N, reads 836 N, then reads more than 836 N

21. 0.68 m/s²

22. a. 4.9×10^2 ; **b.** 150 N. static friction; c. 49 N, sliding friction; **d.** $2.0 \times 10^2 \text{ N}$

23. a. 10 N; b. 0.20

24. 1.5 m/s²

25. 4.8 m/s²

26. a. 9.8 m/s^2 , up; **b.** 98 m/s, up; **c.** -49 N, down; **d.** $1.0 \times$ 10 s

27. a. Refer to Problems and Solutions Manual for Diagram. **b.** upward; **c.** 2.0 m/s²

28. a. 5.88 m/s²; b. 15.7 N

29. a. 3.27 m/s²; **b.** 26.1 N

Answers To PROBLEMS

Complete solutions for all Chapter Review Problems can be found in the Problems and Solutions Manual accompanying this text.

1. a. 45 m/s²; **b.** 3.9×10^4 N; c. 3.1×10^3 N; d. inertial mass

2. 33.02 m/s²; 163.0 m/s

3. No, the acceleration during the first half-second was 45 m/s2 (problem 1) and the acceleration for the full time was 33.02 m/s² (problem 2).

4. -5×10^3 N, upward

5. $3.1 \times 10^3 \text{ N}$

6. $6.3 \times 10^3 \text{ N}$

7. 33 m

8. a. 14 m/s; **b.** 3.2×10^3 N **9.** 6.6×10^{-25} m/s²

10. -2.0 m/s^2

11. a. 95.0 kg; b. 929 N; c. 95.0 kg; d. 934 N; e. "mass-in"

12. 250 kg

13. 10.5 m/s², down

14. -1.13×10^4 N, opposite direction of motion

15. 0.255

16. 0.400

17. -1 m/s^2