Gravity, Normal Forces and Frictional Forces

September 5, 2015 7:48 AM

Force of Gravity (on the surface of the earth)

$$F_g = \frac{-Gm_1m_2}{d^2}$$

on the surface of the earth this equates to

$$F_g = mg$$

 $G = 6.67 \times 10^{-11} \text{ N.m}^2/\text{kg}^2$: Universal Gravitational Constant

 m_e = 5.97 x $10^{24}\ kg$ $\,$: Mass of the earth

 $d_e = 1.74 \times 10^6 \text{ m}$

: Average Radius of the earth

Normal Force: Comes from Newton's third law. It is a force that comes perpendicular to the surface in contact.

FN: Normal Force

Ex: book on a table

Frictional Force (This force opposes motion, but NEVER causes motion)

 $F_f = \mu F_N$

: Coefficeent of friction between two surfaces. It depends on the "roughness" of the two naterials in Contact.

Example: Galilep dropped A 5kg object and a 100kg off a tower. Ignoring air resistance, calculate their accelerations.

Fret=ma -Fg=ma -mg=nxa

The masses concelled So this will work with any mass

Example: A 77kg persons weighs themselves on the surface of earth (g=9.80m/s²) as well as on the surface of Jupiter (g=98.0m/s $^{\circ}$). How does their mass and weight change.

because - does not change

Example: A 77kg persons weighs themselves on the surface of earth $(g=9.80 \text{m/s}^2)$ as well as on the surface of Jupiter $(g=98.0 \text{m/s}^2)$. How does their mass and weight change.

M: mass
$$\rightarrow$$
 does not change
Fg: ueight \rightarrow does change

$$\frac{enth}{F_g = (77)(1.1)}$$

$$= 755N$$

$$= 755N$$

$$Ueight = 755N$$

$$\text{Weight: 7550N}$$

$$\text{Mass} = 77kg$$

$$\text{Mass: 77kg}$$

Example: A 50kg box is pushed along a frictionless surface. The box accelerates at a rate of $5m/s^2$.

a) Calculate the force used to push the box.

Fruit = ma

Fruit = ma

Fruit = ma

$$F_A = ma$$
 $= (50)(5)$
 $F_A = 250N$

b) What would be the acceleration if the force of friction is 147N?

m=0.3

work on problems on page 105