Gravity, Normal Forces and Frictional Forces

Force of Gravity (on the surface of the earth)

$$
F_{g}=\frac{-G m_{1} m_{2}}{d^{2}} \quad \text { on the surface of the earth this equates to } \quad F_{g}=m g
$$

$$
\begin{array}{ll}
\mathrm{G}=6.67 \times 10^{-11} \mathrm{~N} . \mathrm{m}^{2} / \mathrm{kg}^{2} & : \text { Universal Gravitational Constant } \\
\mathrm{m}_{\mathrm{e}}=5.97 \times 10^{24} \mathrm{~kg} & : \text { Mass of the earth } \\
\mathrm{d}_{\mathrm{e}}=1.74 \times 10^{6} \mathrm{~m} & \text { : Average Radius of the earth }
\end{array}
$$

Normal Force: Comes from Newton's third law. It is a force that comes perpendicular to the surface in contact.

$$
F_{f}=\mu F_{N}
$$

μ
: Coeffiecent of friction between two surfaces. It depends on the "roughness" of the
two materials in Contact.

Example: Galilep dropped A 5 kg object and a 100 kg off a tower. Ignoring air resistance, calculate their accelerations.
 object 1

F_{N} : Normal Force

Frictional Force (This force opposes motion, but NEVER causes motion)

The masses Cancelled
$\begin{array}{ll}F_{\text {Net }}=m a & \text { So this will work } \\ -F_{g}=m a & \text { with any mass }\end{array}$
$-m g=m a$
$-g=a$
$-9.8 \mathrm{~m} / \mathrm{s}^{2}=a$
Example: A 77 kg persons weighs themselves on the surface of earth ($\mathrm{g}=9.80 \mathrm{~m} / \mathrm{s}^{2}$) as well as on the surface of Jupiter $\left(g=98.0 \mathrm{~m} / \mathrm{s}^{2}\right)$. How does their mass and weight change.

$$
\text { w.....e } \rightarrow \text { dags ant Chanae }
$$

Example: A 77 kg persons weighs themselves on the surface of earth ($\mathrm{g}=9.80 \mathrm{~m} / \mathrm{s}^{2}$) as well as on the surface of Jupiter $\left(\mathrm{g}=98.0 \mathrm{~m} / \mathrm{s}^{2}\right)$. How does their mass and weight change.
m : mass \rightarrow does not change
F_{g} : weight \rightarrow does change

$$
\begin{aligned}
& \frac{e_{w}+h}{F_{g}}= \\
&=(77)(9.8) \\
&=755 \mathrm{~N} \\
& \text { weight }= 755 \mathrm{~N} \\
& \text { mass }= 77 \mathrm{~kg}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Jupiter } \\
& F_{y}=(77)(98) \\
&=7550 \mathrm{~N} \\
& \text { weight }=7550 \mathrm{~N} \\
& \text { mass }=77 \mathrm{~kg}
\end{aligned}
$$

Example: A 50 kg box is pushed along a frictionless surface. The box accelerates at a rate of $5 \mathrm{~m} / \mathrm{s}^{2}$.
a) Calculate the force used to push the box.
b) What would be the acceleration if the force of friction is 147 N ?

$$
\begin{aligned}
250-147 & =(50)(a) \\
\frac{103}{50} & =\frac{50 a}{50} \\
2.06 \mathrm{~m} / \mathrm{s}^{2} & =a
\end{aligned}
$$

c) What would be the coeffiecent of friction?

$$
\begin{aligned}
& F_{f}=147 \\
& m=50 \mathrm{~kg}
\end{aligned}
$$

$$
\begin{aligned}
& \text { No acceleration } \\
& \text { in the vertical }
\end{aligned}
$$

$$
\begin{aligned}
& \text { No a certes tical } \\
& \text { in the vel }
\end{aligned}
$$

$$
\begin{aligned}
& F_{f}=\mu F_{N} \\
& 147=\mu F_{g} \\
& 147=\mu m g \\
& 147=\mu(50)(9.1) \\
& \mu=\frac{147}{(50)(9.8)}
\end{aligned}
$$

$$
\frac{\text { Vertical }}{F_{\text {Net }}=m a}(a=0)
$$

$$
F_{N}-F_{g}=m_{0}^{m}
$$

$$
F_{N}=F_{g}
$$

$$
\mu=0.3
$$

work on problems on page 105

