Forces

Gravitational Force: This is only an attractive force (that we know of) between two massive bodies.

$$
F_{g}=\frac{-G m_{1} m_{2}}{d^{2}} \quad \text { or } \quad F_{g}=m g \quad \begin{aligned}
g & =9.8 \mathrm{~m} / \mathrm{s}^{2} \\
G & =6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{ky}^{2} \\
d & =\text { distance between }
\end{aligned}
$$

Normal Force: This comes from Newton's third law: For every action force there is an equal and opposite reaction force.

- F_{N} is a force from a surface
F_{N}

Frictional Force: This is a non-conservative force (it can't be undone). It is due to the electrostatic forces between the atoms of two objects.
$F_{f}=\mu F_{N}$
μ : cofffirat of friction
we have two types of μ
μ_{s} : Static (when the object is Stationary)
μ_{k} : Kinetic (when the object is Moving)

$$
\mu_{s}>\mu_{k}
$$

Fr: Normal Force

Dynamics Page 2

Steps to solve these problems:
Step 1: Draw a picture
Step 2: Draw a free body force diagram
Step 3: Use your Fnet equations to solve the horizontal and vertical components.

