4.1: Square Roots and Cube Roots and More!!!

Complete the following operations (Bonus Cool points for doing them in your head)

$$
\begin{aligned}
& 1^{2}=1 \times 1=1 \\
& 2^{2}=2 \times 2=4 \\
& 3^{2}=3 \times 3=9 \\
& 4^{2}=16 \\
& 5^{2}=25 \\
& 6^{2}=36 \\
& 7^{2}=49 \\
& 8^{2}=64 \\
& 9^{2}=81 \\
& 10^{2}=100 \\
& 11^{2}=121 \\
& 12^{2}=144 \\
& 13^{2}=169 \\
& 14^{2}=196 \\
& 15^{2}=225
\end{aligned}
$$

These are squares and cubes. We could go even further and do powers of 4,5 , etc.
Roots are the reverse operation of these powers : just like $\begin{array}{r}x \\ +,\end{array}$

Root:

y :integer (No y means $y=z$)
x : Real number

This root tells us to find a real number that equals " X " when it is multiplied by itself " Y " number of times

Example:

$$
\begin{aligned}
& \sqrt{64}=\sqrt[2]{\underbrace{8 \cdot 8}_{2}}=8 \\
& \sqrt[3]{125}=\sqrt[3]{\underbrace{5 \cdot 5 \cdot 5}_{2}}=5
\end{aligned}
$$

$$
\begin{align*}
& \sqrt[3]{125}=\sqrt[3]{\underbrace{5 \cdot 5 \cdot 5}_{3}}=5 \\
& \sqrt[2]{(4)(36)}=12
\end{align*}
$$

other
Roots can be distributed just like powers. The root of two numbers multiplied or divided together can be broken apart.

Example:

$$
\begin{aligned}
\sqrt[2]{(4)(36)} & =\sqrt[2]{4} \cdot \sqrt[2]{36} \\
& =2 \cdot 6 \\
& =12
\end{aligned}
$$

$$
\sqrt[y]{(x)(t)}=\sqrt[y]{x} \cdot \sqrt[4]{t} \quad \text { or } \sqrt[y]{\frac{x}{t}}=\frac{\sqrt[y]{x}}{\sqrt[y]{t}}
$$

Yo. dry

$$
\begin{aligned}
& \sqrt{(16)(144)}=\sqrt{16} \cdot \sqrt{144}=48 \\
&=4 \cdot 12=2 \\
&=\sqrt{9} \cdot \sqrt{81} \\
&=3 \cdot 9=27 \\
& \sqrt{(9)(81)} \\
& \sqrt[3]{27 x^{3}}=\sqrt[3]{27} \cdot \sqrt[3]{x^{3}}=3 x \\
&=3 \cdot x=
\end{aligned}
$$

$$
\neq 27=3 \cdot 3 \cdot 3
$$

$$
x^{3}=x \cdot x \cdot x
$$

You can apply a root to a variable the same way as you would to a number.

$$
\begin{aligned}
\sqrt[3]{y^{3}} & =\sqrt[3]{\underbrace{y \cdot y \cdot y}_{3 \cdot y^{\prime}}} \\
& =y
\end{aligned}
$$

$$
\begin{aligned}
\sqrt{9 y^{4} x^{6}} & =\sqrt{\underbrace{3 \cdot 3}_{2} \cdot \underbrace{y \cdot y \cdot y \cdot y \cdot y}_{2} \underbrace{x \cdot x}_{2} \underbrace{x \cdot x \cdot x}_{2} \underbrace{x \cdot x \cdot x}_{2}} \\
& =3 \cdot y \cdot \underbrace{y \cdot y \cdot x \cdot x \cdot x}_{2} \\
& =3 y^{2} x^{3}
\end{aligned}
$$

you tm

$$
\begin{aligned}
& \sqrt{4 x^{2}}=\sqrt{{\underset{\sim}{2}}_{2 \cdot 2 \cdot x \cdot x}^{2}=2 x} \\
& \sqrt[3]{64 a^{6}}=\sqrt{\underbrace{4 \cdot 4 \cdot 4 \cdot}_{3} \cdot \underbrace{a \cdot a \cdot a \cdot a \cdot a \cdot a}_{3} \underbrace{}_{3}}=4 \cdot a \cdot a \\
& \sqrt{18 x^{3}}=\sqrt{2 \cdot \frac{3 \cdot x \cdot a}{x \cdot x \cdot x}}=3 x \sqrt{2 x}
\end{aligned}
$$

What happens if they number does not go into the root evenly?

$$
\begin{aligned}
\sqrt{18 x^{3}} & =\sqrt{3 \cdot 3 \cdot 2 \cdot \underbrace{x \cdot x}_{2} \cdot x} \\
& =3 x \sqrt{2 x}^{2}
\end{aligned}
$$

Take out what you can from the root and leave what remains behind.
$9 .+3$

$$
\begin{aligned}
& \sqrt{12}=\sqrt{3 \cdot 2 \cdot x}=2 \sqrt{3} \\
& \sqrt[3]{16 a^{5}}=\sqrt[3]{\underbrace{2-2 \cdot x \cdot 2 \cdot \underbrace{a \cdot a \cdot a \cdot a \cdot a}_{3}}_{3}=2 a \sqrt[3]{2 a^{2}}}
\end{aligned}
$$

Homework: pg. 158 Q:

$$
\begin{aligned}
& 1-8(a c c) \\
& 9,11,13,15
\end{aligned}
$$

Negative cumbers ir exports

$$
\begin{array}{rlrl}
& -10^{2} \quad \text { Vs. } & (-10)^{2} \\
=-(10)^{2} & & (-10) \cdot(-10) \\
= & -100 & = & 100
\end{array}
$$

