Equilibrium occurs when an object is not accelerated and is not rotating.

In order for an object to be in equilibrium the following two conditions for equilibrium must be satisfied:

First Condition of Equilibrium is satisfied when the sum of the forces acting on an object equals zero in all directions, $\Sigma F = 0$.

Second Condition of Equilibrium is satisfied when the sum of all torques acting on an object about any axis perpendicular to the plane of the forces equals zero, $\Sigma \tau = 0$

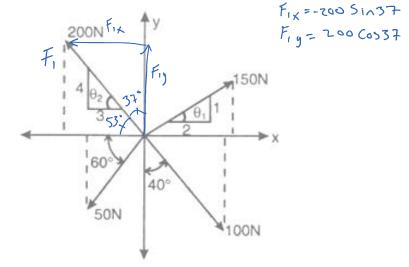
FREEY = 0

(Rotational Forces)

Static Equilibrium occurs when an object at equilibrium is at rest.

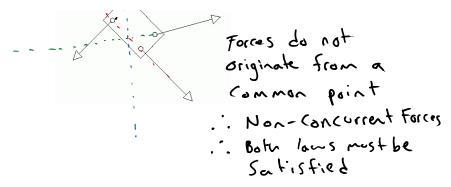
Dynamic Equilibrium occurs when an object at equilibrium is moving in a straight line at a constant speed.

Concurrent Forces are aligned such that the line of action of each force acting on the object passes through a common point. If the forces are concurrent, only the first condition of equilibrium ($\Sigma F = 0$) is needed to solve the problem.



Non-concurrent Forces are aligned such that the line of action of each force does not pass through a common point. The result is a net torque which tends to cause the object to rotate. If the forces are non-concurrent, and yet the object is in equilibrium, then both conditions of equilibrium are required to solve the problem ($\Sigma F = 0$ and $\Sigma \tau = 0$)

All forces and torgues must balance for Equilibrium. Forces do not



Problem Solving Skills

- 1. Draw an accurate diagram locating the forces acting on the object or systems of objects.
- 2. Draw a free body diagram locating the forces acting on the object(s) in question.
- 3. Resolve each force vector into x and y components.
- 4. Apply the first condition of equilibrium ($\Sigma F_x=0$, $\Sigma F_y=0$) and solve the problem.

1) Calculate the tension in the two cords used to support the 200 kg chandelier.

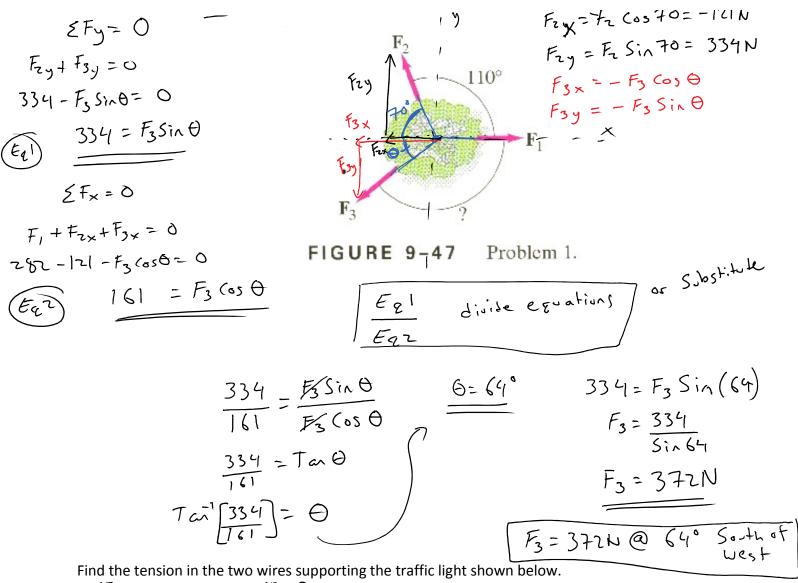
Fig =
$$F_{1} = F_{1} \cos 60$$

Fig = $F_{1} \sin 60$
 $F_{1} = F_{1} \sin 60$
 $F_{2} = F_{1} \sin 60$
 $F_{3} = F_{2} = 0$
 $-F_{1x} + F_{2} = 0$
 $F_{1} \sin 60 - 1960 = 0$
 $F_{2} = tF_{1} \cos 60$
 $F_{1} = \frac{1900}{5in60}$
 $F_{2} = tF_{1} \cos 60$
 $F_{2} = tF_{1} \cos 60$
 $F_{2} = tF_{1} \cos 60$
 $F_{3} = tF_{3} \cos 60$
 $F_{4} = 2263N$
 $F_{5} = 11/32N$

2) Three forces are applied to a tree sapling, as shown below, to stabilize it. If F_1 =282N and F_2 =355N, find F_3 in magnitude and direction.

$$F_{2} = F_{2} \cos 70 = -121N$$

$$F_{2} = F_{2} \sin 70 = 334N$$



$$\frac{\xi F_{y} = 0}{T_{1y} + T_{2y} - F_{g} = 0}$$

$$\frac{\xi F_{x} = 0}{T_{2x} - T_{1x} = 0}$$

$$T_{1} \sin 53 + T_{2} \sin 53 + T_{2} \sin 53 + 294 = 0$$

$$T_{1} \sin 53 + T_{1} \frac{\cos 53}{\cos 37} - 294 = 0$$

$$T_{1} \sin 53 + T_{1} \frac{\cos 53}{\cos 37} - 294 = 0$$

$$T_{1} \left[\sin 53 + (\cos 53T \cos 37) \right] = 294$$

$$T_{1} = \frac{294}{\sin 53 + (\cos 53T \cos 37)}$$

$$T_{1} = \frac{294}{\sin 53 + (\cos 53T \cos 37)}$$

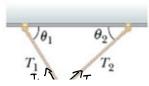
$$T_{1} = \frac{294}{\sin 53 + (\cos 53T \cos 37)}$$

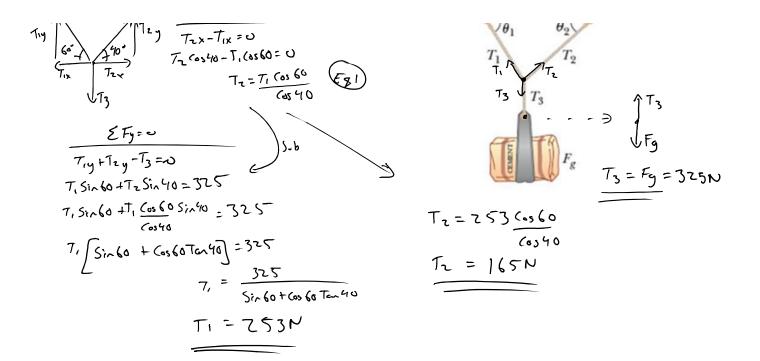
$$T_{1} = \frac{235}{N}$$

$$T_{2} = T_{1} \left(\frac{\cos 53}{\cos 37} \right)$$

A bag of cement weighing 325 N hangs in equilibrium from three wires. Two of the wires make angles $\theta_1 = 60.0^\circ$ and $\theta_2 = 40.0^\circ$ with the horizontal. Assuming the system is in equilibrium, find the tensions T_1 , T_2 , and T_3 in the wires

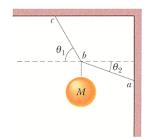
Try
$$f_{1}$$
 T_{2} $\underbrace{\xi F_{x=0}}{T_{2x} - T_{1x} = 0}$
 $\overline{T_{2} - T_{1x} = 0}$
 $\overline{T_{2} - T_{1x} = 0}$





The system in the figure below is in equilibrium. The angles are

- θ_1 = 58° and θ_2 = 15°, and the ball has mass M = 2.3 kg.
- (a) What is the tension in string ab?
- (b) What is the tension in string bc?



The system below is in equilibrium, with the string in the center exactly horizontal. Block A weighs 25 N, block B weighs 55 N, and angle is 36°.

(a) Find tension
$$T_1$$
.
(b) Find tension T_2 .
(c) Find tension T_3 .
(d) Find angle ϑ .
 $T_1 = \vartheta = 3$
 $T_1 = \vartheta = 32.9 (Sin 36) = 18.16M$
 $T_2 = 30.9 (Sin 36) = 18.16M$
 $T_3 = 55 = 55$
 $T_3 = 55$
 $T_3 = 55 = 57.9 N$
 $T_3 = 55 = 57.9 N$

	Formula
Tangent and Cotan	gent Identities
$\tan \theta = \frac{\sin \theta}{\cos \theta}$	$\cot \theta = \frac{\cos \theta}{\sin \theta}$
cos θ	$\sin \theta$
Reciprocal Identiti	es
$\csc \theta = \frac{1}{\sin \theta}$	$\sin \theta = \frac{1}{\csc \theta}$
$\sin \theta$	csc θ
$\sec \theta = \frac{1}{\cos \theta}$	$\cos\theta = \frac{1}{\sec\theta}$
cos θ	sec $ heta$
$\cot \theta = \frac{1}{1}$	$\tan \theta = \frac{1}{1}$
$tan \theta$	cot θ
Pythagorean Identi	ities
$\sin^2 \theta + \cos^2 \theta = 1$	
$\tan^2 \theta + 1 = \sec^2 \theta$	
$1 + \cot^2 \theta = \csc^2 \theta$	

Even/Odd Formulas

$sin(-\theta) = -sin\theta$	$csc(-\theta) = -csc\theta$
$\cos(-\theta) = \cos\theta$	$\sec(-\theta) - \sec\theta$
$tan(-\theta) = -tan \theta$	$\cot(-\theta) = -\cot\theta$

Periodic Formulas

If n is an integer.	
$\sin(\theta + 2\pi n) = \sin \theta$	$\csc(\theta + 2\pi n) - \csc \theta$
$\cos(\theta + 2\pi n) - \cos\theta$	$\sec(\theta + 2\pi n) - \sec\theta$
$\tan(\theta + \pi n) = \tan \theta$	$\cot(\theta + \pi n) - \cot\theta$

Double Angle Formulas

$$\sin(2\theta) - 2\sin\theta\cos\theta$$

$$\cos(2\theta) - \cos^2\theta - \sin^2\theta$$

$$- 2\cos^2\theta - 1$$

$$-1 - 2\sin^2\theta$$

$$\tan(2\theta) - \frac{2\tan\theta}{1 - \tan^2\theta}$$

Degrees to Radians Formulas

If x is an angle in degrees and t is an angle in radians then

 $\frac{\pi}{180} - \frac{t}{x} \implies t - \frac{\pi x}{180}$ and $x - \frac{180t}{\pi}$

is and Identities
Half Angle Formulas
$$\sin^2 \theta = \frac{1}{2}(1 - \cos(2\theta))$$

 $\cos^2 \theta = \frac{1}{2}(1 + \cos(2\theta))$
 $\tan^2 \theta = \frac{1 - \cos(2\theta)}{1 + \cos(2\theta)}$

Sum and Difference Formulas $\sin(\alpha \pm \beta) - \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$ $\cos(\alpha \pm \beta) - \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$ $\tan(\alpha \pm \beta) - \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}$

Product to Sum Formulas

$$\sin \alpha \sin \beta - \frac{1}{2} [\cos(\alpha - \beta) - \cos(\alpha + \beta)]$$

$$\cos \alpha \cos \beta - \frac{1}{2} [\cos(\alpha - \beta) + \cos(\alpha + \beta)]$$

$$\sin \alpha \cos \beta - \frac{1}{2} [\sin(\alpha + \beta) + \sin(\alpha - \beta)]$$

$$\cos \alpha \sin \beta - \frac{1}{2} [\sin(\alpha + \beta) - \sin(\alpha - \beta)]$$

Sum to Product Formulas

$$\sin \alpha + \sin \beta = 2\sin\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$$
$$\sin \alpha - \sin \beta = 2\cos\left(\frac{\alpha+\beta}{2}\right)\sin\left(\frac{\alpha-\beta}{2}\right)$$
$$\cos \alpha + \cos \beta = 2\cos\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$$
$$\cos \alpha - \cos \beta = -2\sin\left(\frac{\alpha+\beta}{2}\right)\sin\left(\frac{\alpha-\beta}{2}\right)$$

Cofunction Formulas

$$\sin\left(\frac{\pi}{2}-\theta\right) - \cos\theta \qquad \cos\left(\frac{\pi}{2}-\theta\right) - \sin\theta$$
$$\csc\left(\frac{\pi}{2}-\theta\right) - \sec\theta \qquad \sec\left(\frac{\pi}{2}-\theta\right) - \csc\theta$$
$$\tan\left(\frac{\pi}{2}-\theta\right) - \cot\theta \qquad \cot\left(\frac{\pi}{2}-\theta\right) - \tan\theta$$

A reminder: To find a component of tension:

 $T_{x} = ?N$ $T_{y} = 100 \cos 30^{\circ} = 86.6N$ $T_{y} = ?N$ $T_{z} = 100 \sin 30^{\circ} = 50 N$

But sometimes you have the component and you want to find the tension of the wire.