Equilibrium part 1

Short Answer

1. A 228N weight is supported by two ropes fastened together by a knot, as shown in the diagram below. The angle $\theta = 38^{\circ}$ and the angle $\phi = 22^{\circ}$ (4 marks)

a) What is the tension in rope 1? (2 marks)

ANSWER:

b) What is the tension in rope 2? (2 marks)

ANSWER:

2. A 75kg mass is supported by two ropes fastened together by a knot, as shown in the diagram below. The angle $\theta = 59^{\circ}$ and the angle $\phi = 69^{\circ}$ shown suspended by two ropes. (4 marks)

a) What is the tension in rope 1? (2 marks)

ANSWER:		

b) What is the tension in rope 2? (2 marks)

ANSWER:	

3. Two cables support a vertical tower. The tension in each cable is shown. $tension_1 = 323N$ $tension_2 = 64N$

What is the angle θ ? (3 marks)

ANSWI		The state of the second st	
-	 <u> </u>	-	

4. Two forces act at point P as shown below.

Find the magnitude of the third force required to achieve equilibrium.

	······	************	
ANSWE	R:		

5. A 11kg mass is suspended from a cord at an angle of 23°.

What force is needed to hold it at that angle? (3 marks)

ANSWER:	

6. A mass is suspended from a cord at an angle of 64° . The mass is held as shown with a horizontal 498N force.

Find the mass. (3 marks)

ANSWER:	man 1 a a a a a a a a a a a a a a a a a a	очиности полити висте на поли виде и и виде и и и 1 до 1 до 1 до 1 до 1 до 1 до 1 д

7. A 21kg mass is suspended from a cord. The mass is held as shown with a horizontal 163N force.

Find the angle θ . (3 marks)

ANSWER:
AND WELL
And the state of t

8. A 43kg mass suspended by a string is held 43° from vertical as shown.

Find the force.

ANSWER:	

9. A mass suspended by a string is held 39° from vertical by a force of 408 N as shown.

Find the mass.

ANSWER:	

10. A 11kg mass suspended by a string is held at an angle θ from vertical as shown by a force of 52N.

Find the angle.

Δ	NSWER:	
21.	NO W LAKE	
_		

SHORT ANSWER

1. A 228N weight is supported by two ropes fastened together by a knot, as shown in the diagram below. The angle $\theta = 38^{\circ}$ and the angle $\phi = 22^{\circ}$ (4 marks)

ANSWER: (4 marks)

a) What is the tension in rope 1? (2 marks)

$$\sum F_x = 0$$

$$-T_{x_1} + T_{x_2} = 0$$

$$-T_1 \cdot \cos(\theta) + T_2 \cdot \cos(\phi) = 0$$

$$T_2 = \frac{T_1 \cdot \cos(\theta)}{\cos(\phi)}$$

$$\sum F_y = 0$$

$$T_{y_1} + T_{y_2} - W = 0$$

$$T_1 \cdot \sin(\theta) + T_2 \cdot \sin(\phi) = W$$

$$T_1 \cdot \sin(\theta) + \frac{T_1 \cdot \cos(\theta)}{\cos(\phi)} \cdot \sin(\phi) = W$$

$$T_1 \left(\sin(\theta) + \frac{\cos(\theta)}{\cos(\phi)} \cdot \sin(\phi) \right) = W$$

$$T_{1} = \frac{W}{\left(\sin(\theta) + \frac{\cos(\theta)}{\cos(\phi)} \cdot \sin(\phi)\right)} = \frac{228N}{\left(\sin(38) + \frac{\cos(38)}{\cos(22)} \cdot \sin(22)\right)} = \frac{244.1N}{\left(\sin(38) + \frac{\cos(38)}{\cos(22)} \cdot \sin(22)\right)}$$

b) What is the tension in rope 2? (2 marks)

$$\sum F_x = 0$$

$$-T_{x_1} + T_{x_2} = 0$$

$$-T_1 \cdot \cos(\theta) + T_2 \cdot \cos(\phi) = 0$$

$$T_1 = \frac{T_2 \cdot \cos(\phi)}{\cos(\theta)}$$

$$\sum F_1 = 0$$

$$\sum F_y = 0$$

$$T_{y_1} + T_{y_2} - W = 0$$

$$T_1 \cdot \sin(\theta) + T_2 \cdot \sin(\phi) = W$$

$$\frac{T_2 \cdot \cos(\phi)}{\cos(\theta)} \cdot \sin(\theta) + T_2 \cdot \sin(\phi) = W$$

$$T_2 \left(\frac{\cos(\phi)}{\cos(\theta)} \cdot \sin(\theta) + \sin(\phi) \right) = W$$

$$T_2 = \frac{W}{\left(\frac{\cos(\phi)}{\cos(\theta)} \cdot \sin(\phi) + \sin(\phi)\right)} = \frac{228N}{\left(\frac{\cos(22^\circ)}{\cos(38^\circ)} \cdot \sin(38^\circ) + \sin(22^\circ)\right)} = \frac{207.46N}{\left(\frac{\cos(22^\circ)}{\cos(38^\circ)} \cdot \sin(38^\circ) + \sin(22^\circ)\right)}$$

OR using the geometry method:

$$\begin{split} \frac{a}{\sin A} &= \frac{b}{\sin B} = \frac{c}{\sin C} \\ \frac{T_1}{\sin(90^\circ - \phi)} &= \frac{weight}{\sin(\theta + \phi)} \\ T_1 &= \frac{weight \cdot \sin(90^\circ - \phi)}{\sin(\theta + \phi)} = \frac{228N \cdot \sin(90^\circ - 22^\circ)}{\sin(38^\circ + 22^\circ)} = \frac{244.1N}{\sin(90^\circ - \phi)} \\ \frac{T_2}{\sin(90^\circ - \phi)} &= \frac{weight}{\sin(\theta + \phi)} \\ T_2 &= \frac{weight \cdot \sin(90^\circ - \phi)}{\sin(\theta + \phi)} = \frac{228N \cdot \sin(90^\circ - 38^\circ)}{\sin(38^\circ + 22^\circ)} = \frac{207.46N}{\sin(38^\circ + 22^\circ)} \end{split}$$

2. A 75kg mass is supported by two ropes fastened together by a knot, as shown in the diagram below. The angle $\phi = 59^{\circ}$ and the angle $\phi = 69^{\circ}$ shown suspended by two ropes. (4 marks)

ANSWER: (4 marks)

a) What is the tension in rope 1? (2 marks)

$$\sum F_x = 0$$

$$-T_{x_1} + T_{x_2} = 0$$

$$-T_1 \cdot \cos(\theta) + T_2 \cdot \sin(\phi) = 0$$

$$T_2 = \frac{T_1 \cdot \cos(\theta)}{\sin(\phi)}$$

$$\sum F_{\nu} = 0$$

$$T_{y_1} + T_{y_2} - W = 0$$

$$T_1 \cdot \sin(\theta) + T_2 \cdot \cos(\phi) = m \cdot 9.8m/s^2$$

$$T_1 \cdot \sin(\theta) + \frac{T_1 \cdot \cos(\theta)}{\sin(\phi)} \cdot \cos(\phi) = m \cdot 9.8m/s^2$$

$$T_1 \left\{ \sin(\theta) + \frac{\cos(\theta)}{\sin(\phi)} \cdot \cos(\phi) \right\} = m \cdot 9.8m/s^2$$

$$T_1 = \frac{m \cdot 9.8m/s^2}{\left(\sin(\theta) + \frac{\cos(\theta)}{\sin(\phi)} \cdot \cos(\phi)\right)} = \frac{75kg \cdot 9.8m/s^2}{\left(\sin(59) + \frac{\cos(59)}{\sin(69)} \cdot \cos(69)\right)} = \frac{696.77N}{\left(\sin(59) + \frac{\cos(59)}{\sin(69)} \cdot \cos(69)\right)}$$

b) What is the tension in rope 2? (2 marks)

$$T_2 = \frac{T_1 \cdot \cos(\theta)}{\sin(\phi)} = \frac{696.77N \cdot \cos(59^\circ)}{\sin(69^\circ)} = \frac{384.39N}{\sin(69^\circ)}$$

OR using the geometry method:

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$\frac{T_1}{\sin(\phi)} = \frac{weight}{\sin(\theta + 90^\circ - \phi)}$$

$$T_{\rm i} = \frac{m \cdot 9.8m/s^2 \cdot \sin(\phi)}{\sin(\theta + 90^\circ - \phi)} = \frac{75kg \cdot 9.8m/s^2 \cdot \sin(69^\circ)}{\sin(59^\circ + 90^\circ - 69^\circ)} = \frac{696.77N}{\sin(59^\circ + 90^\circ - 69^\circ)}$$

$$\frac{T_2}{\sin(90^\circ - \theta)} = \frac{weight}{\sin(\theta + 90^\circ - \phi)}$$

$$T_2 = \frac{m \cdot 9.8m/s^2 \cdot \sin(90^\circ - \theta)}{\sin(\theta + 90^\circ - \phi)} = \frac{75kg \cdot 9.8m/s^2 \cdot \sin(90^\circ - 59^\circ)}{\sin(59^\circ + 90^\circ - 69^\circ)} = \underline{384.39N}$$

3. Two cables support a vertical tower. The tension in each cable is shown. $tension_1 = 323N$ $tension_2 = 64N$

What is the angle θ ? (3 marks)

ANSWER: (3 marks)

$$\sum F_x = 0$$

$$-T_{x_1} + T_2 = 0 T_{x_1} = T_2$$

$$\cos(\theta) = \frac{\mathbf{T}_{x_1}}{T_1} \qquad \mathbf{T}_{x_1} = T_2$$

$$\cos(\theta)^{-1} = \frac{T_2}{T_1} = \frac{64N}{323N} = \frac{78.57^{\circ}}{1}$$

4. adsfds

5. A 11kg mass is suspended from a cord at an angle of 23°. What force is needed to hold it at that angle? (3 marks)

ANSWER: (3 marks)

$$\sum F_{x} = 0$$

$$-F_{x_L} + F_{x_R} = 0 \qquad F_{x_L} = F_{x_R}$$

$$\sum F_{v} = 0$$

$$F_y - F_g = 0$$
 $F_y = F_g$ $\tan(\theta) = \frac{F_y}{F_{x_R}}$ $F_{x_L} = F_{x_R}$

$$F_y = F_{x_L} \cdot \tan(\theta)$$

$$F_{x_i} \cdot \tan(\theta) = m \cdot g$$

$$F_{x_L} = \frac{m \cdot g}{\tan(\theta)} = \frac{11kg \cdot 9.8m/s^2}{\tan(23^\circ)} = \underline{253.96N}$$

6. A mass is suspended from a cord at an angle of 64° . The mass is held as shown with a horizontal 498N force.

Find the mass. (3 marks)

ANSWER: (3 marks)

$$\sum F_x = 0$$

$$-F_{x_L} + F_{x_R} = 0 \qquad F_{x_L} = F_{x_R}$$

$$\sum F_y = 0$$

$$F_y - F_g = 0$$
 $F_y = F_g$ $\tan(\theta) = \frac{F_y}{F_{x_R}}$ $F_{x_L} = F_{x_R}$

$$F_{y} = F_{x_{L}} \cdot \tan(\theta)$$

$$F_{x_L} \cdot \tan(\theta) = m \cdot g$$

$$m = \frac{F_{x_L} \cdot \tan(\theta)}{g} = \frac{498N \cdot \tan(64^\circ)}{9.8m/s^2} = \underline{104.19kg}$$

7. A 21kg mass is suspended from a cord. The mass is held as shown with a horizontal 163N force.

Find the angle θ . (3 marks)

ANSWER: (3 marks)

$$\sum F_x = 0$$

$$-F_{x_L} + F_{x_R} = 0 \qquad F_{x_L} = F_{x_R}$$

$$\sum F_y = 0$$

$$F_y - F_g = 0$$
 $F_y = F_g$ $\tan(\theta) = \frac{F_y}{F_{x_R}}$ $F_{x_L} = F_{x_R}$

$$F_y = F_{x_L} \cdot \tan(\theta)$$

$$F_{x_L} \cdot \tan(\theta) = m \cdot g$$

$$\tan(\theta)^{-1} = \frac{m \cdot g}{F_{x_L}} = \frac{21kg \cdot 9.8m/s^2}{163N} = \underline{51.62^\circ}$$

8.

$$\sum F_{y} = 0$$

$$T_{y} + F_{y} - F_{g} = 0$$

$$T\cos \theta + F\sin \theta - mg = 0$$
Isolate
$$T$$

$$T = \frac{mg - F\sin \theta}{\cos \theta}$$

$$\sum F_{x} = 0$$

$$-T_x + F_x = 0$$

$$-T\sin\theta + F\cos\theta = 0$$

Isolate T

$$T = \frac{F\cos\theta}{\sin\theta}$$

$$\frac{mg - F\sin\theta}{\cos\theta} = \frac{F\cos\theta}{\sin\theta}$$

Solve for F

$$\frac{mg}{\cos\theta} - \frac{F\sin\theta}{\cos\theta} = \frac{F\cos\theta}{\sin\theta}$$

$$\frac{mg}{\cos\theta} = \frac{F\cos\theta}{\sin\theta} + \frac{F\sin\theta}{\cos\theta}$$

factor out F

$$F\left(\frac{\cos\theta}{\sin\theta} + \frac{\sin\theta}{\cos\theta}\right) = \frac{mg}{\cos\theta}$$

$$F\left\{\frac{\cos^2\theta + \sin^2\theta}{\sin\theta \cdot \cos\theta}\right\} = \frac{mg}{\cos\theta}$$

Trigonometry Identity: $\cos^2 \theta + \sin^2 \theta = 1$

$$F\left(\frac{1}{\sin\theta\cdot\cos\theta}\right) = \frac{mg}{\cos\theta}$$

Cancel the cosine θ

$$F = \sin\theta \cdot mg = \sin 43^{\circ} \cdot 43kg \cdot 9.8m/s^{2} = 287.39N$$

$$\sum F_{y} = 0$$

$$T_y + F_y - F_g = 0$$

$$T\cos\theta + F\sin\theta - mg = 0$$

Isolate T

$$T = \frac{mg - F\sin\theta}{\cos\theta}$$

$$\sum F_x = 0$$

$$-T_x + F_x = 0$$

$$-T\sin\theta + F\cos\theta = 0$$

Isolate T

$$T = \frac{F\cos\theta}{\sin\theta}$$

$$\frac{mg - F\sin\theta}{\cos\theta} = \frac{F\cos\theta}{\sin\theta}$$

Solve for m

$$\frac{mg}{\cos\theta} - \frac{F\sin\theta}{\cos\theta} = \frac{F\cos\theta}{\sin\theta}$$

$$\frac{mg}{\cos\theta} = \frac{F\cos\theta}{\sin\theta} + \frac{F\sin\theta}{\cos\theta}$$

factor out F

$$F\left(\frac{\cos\theta}{\sin\theta} + \frac{\sin\theta}{\cos\theta}\right) = \frac{mg}{\cos\theta}$$

$$F\left\{\frac{\cos^2\theta + \sin^2\theta}{\sin\theta \cdot \cos\theta}\right\} = \frac{mg}{\cos\theta}$$

Trigonometry Identity: $\cos^2 \theta + \sin^2 \theta = 1$

$$F\left(\frac{1}{\sin\theta\cdot\cos\theta}\right) = \frac{mg}{\cos\theta}$$

Cancel the cosine heta

$$m = \frac{F}{g \sin \theta} = \frac{408N}{\sin 39^{\circ} \cdot 9.8m/s^{2}} = \frac{66.15kg}{\sin 39^{\circ} \cdot 9.8m/s^{2}}$$

$$\sum F_{y} = 0$$

$$T_y + F_y - F_g = 0$$

$$T\cos\theta + F\sin\theta - mg = 0$$

Isolate T

$$T = \frac{mg - F\sin\theta}{\cos\theta}$$

$$\sum F_x = 0$$

$$-T_x + F_x = 0$$

$$-T\sin\theta + F\cos\theta = 0$$

Isolate T

$$T = \frac{F\cos\theta}{\sin\theta}$$

$$\frac{mg - F\sin\theta}{\cos\theta} = \frac{F\cos\theta}{\sin\theta}$$

Solve for θ

$$\frac{mg}{\cos\theta} - \frac{F\sin\theta}{\cos\theta} = \frac{F\cos\theta}{\sin\theta}$$

$$\frac{mg}{\cos\theta} = \frac{F\cos\theta}{\sin\theta} + \frac{F\sin\theta}{\cos\theta}$$

factor out F

$$F\left(\frac{\cos\theta}{\sin\theta} + \frac{\sin\theta}{\cos\theta}\right) = \frac{mg}{\cos\theta}$$

$$F\left(\frac{\cos^2\theta + \sin^2\theta}{\sin\theta \cdot \cos\theta}\right) = \frac{mg}{\cos\theta}$$

Trigonometry Identity: $\cos^2 \theta + \sin^2 \theta = 1$

$$F\left(\frac{1}{\sin\theta\cdot\cos\theta}\right) = \frac{mg}{\cos\theta}$$

Cancel the cosine θ

$$\sin\theta = \frac{F}{mg} = \frac{52N}{11kg \cdot 9.8m/s^2}$$

$$\sin \theta = \frac{F}{mg} = \frac{52N}{11kg \cdot 9.8m/s^2}$$
 $\sin^{-1} \left(\frac{52N}{11kg \cdot 9.8m/s^2} \right) = \frac{28.84^{\circ}}{11kg \cdot 9.8m/s^2}$