Torque is a measure of how much a force acting on an object causes that object to rotate. The object rotates about an axis, which we will call the pivot point. The distance from the pivot point to the point where the force acts is called the moment arm.

Torque is defined as $\boldsymbol{\tau}=\mathbf{r} \times \mathbf{F}_{\perp}=\mathbf{r} \cdot \mathbf{F} \sin (\boldsymbol{\theta})$
The S.I. unit for torque is $\mathbf{N} \cdot \mathbf{m}$. (it is a vector)
r is the distance from the pivot point to where the

force is applied!!!!!!!!!

$$
\begin{aligned}
& \text { The rulers mass is } 400 \text { grams. } \\
& F_{1}=30 \mathrm{~N} . \text { What is } F_{2} \text { if this } \\
& \text { ruler is in e quilibrium. } \\
& \sum \tau_{c c w}=\sum \tau_{c w} \\
& F_{2} \cdot(0.03)=F_{g} \cdot(0.03)+F_{1} \cdot(0.09) \\
& F_{2}=\frac{(0.4)(9.1)(0.03)+30 \cdot(0.09)}{0.03}
\end{aligned}
$$

$$
F_{2}=94 \mathrm{~N}
$$

The moment arm's center of gravity/mass is located at the center, assuming the object is uniform in density. That is $\mathrm{C}_{\mathrm{of}} \mathrm{G}$ is length/2.

Rank these forces (A through F) on the basis of the magnitude (FROM SMALLEST TO LARGEST) of the torque they apply to the wrench, measured about an axis centered on the bolt.

Assume all forces are
equal

Rank these forces on the basis of the magnitude (FROM SMALLEST TO LARGEST) of the torque they apply to the wrench, measured about an axis centered on the bolt.

$2^{\text {nd }}$ Condition of Equilibrium is $\sum \tau=0$
$(\sqrt{2}) \mathrm{cw}$
$\sum \tau_{\text {clockwise }}=\sum \tau_{\text {counterclockwise }}$

Find r to Keepthabmbean balanced (assume a massless bean)

$$
\begin{aligned}
\sum T_{c c \omega} & =\sum \tau_{c \omega} \\
F_{1} r_{1} & =F_{2} r_{2} \\
(30)((2,)(3) & =(60)(9-1))_{r} \\
\frac{(30)(3)}{60} & =\frac{60 r^{3}}{60} \\
1.5 n & =r
\end{aligned}
$$

Calculate F_{A} and F_{B} for the 250 kg beam shown below.

seond law
You can pick where the pivot point goes. But, be smart about it. L
Try to climate on unknown force.

$$
\begin{aligned}
F_{A}+F_{B} & =12050 \\
F_{A}+5925 & =12050 \\
F_{A} & =6125 \mathrm{~N}
\end{aligned}
$$

Calculate the forces A and B that the supports exert on the $35-\mathrm{kg}$ diving board when a $60-\mathrm{kg}$ person stands at its tip.

$$
\begin{aligned}
& \Sigma F_{y}=0 \\
& F_{B}-F_{A}-F_{g_{1}}-F_{g_{2}}=0 \\
& F_{B}=F_{A}+(35)(9.8)+(60)(9.8) \\
& F_{B}=F_{A}+931
\end{aligned}
$$

$$
\begin{aligned}
\sum Z_{c c N} & =\sum Z_{c \omega} \\
F_{A}(1) & =F_{g_{1}}(1)+F_{g_{2}}(3) \\
F_{A} & =(35)(9.8)(1)+(68)(9.8)(3) \\
F_{A} & =2107 \mathrm{~N} \text { down }
\end{aligned}
$$

$$
\begin{aligned}
& F_{B}=2107+931 \\
& F_{B}=3038 \mathrm{~N} u p
\end{aligned}
$$

A house painter stands 3 m above the ground on a 5.1 m long ladder that leans against the wall at a point 4.7 m above the ground. The painter weighs 651 N and the ladder weighs 137 N . Assuming no friction between the house and the upper end of the ladder, find the force of friction that the driveway exerts on

regt

If the mass of the ladder is 12.0 kg , the mass of the painter is 60.0 kg , and the ladder begins to slip at its base whenrshèis 70 percent of the way up the length of the ladder, what is the coefficient of static friction between the ladder and the floor? Again assume the wall is frictionless. A free-body diagram is shown in Fig. 9-63.

FIGURE 9-63 Problem 31.

An 8.3 m 270 N uniform ladder rests against a smooth wall. The coefficient of static friction between the ladder and the ground is 0.6 , and the ladder makes a 50 degree angle with the
ground. How far up the ladder can a 700 N person climb before the ladder begins to slip?

