4.4: Irrational Numbers and Radicals

Irrational Numbers

A number that cannot be expressed in the form of a fraction of integers.

These numbers cannot be written as a terminating or repeating decimal number

$$
\begin{aligned}
E x: & =3.14159235 \ldots \\
\sqrt{2} & =1.414213562 \ldots
\end{aligned}
$$

Remember from yesterday:

Converting from power form to radical form

$$
x^{\frac{m}{n}}=\sqrt[n]{x^{m}}=(\sqrt[n]{x})^{m}
$$

I fear that I will always be A lonely number like root three A three is all that's good and right, Why must my three keep out of sight Beneath a vicious square root sign, I wish instead I were a nine For nine could thwart this evil trick, With just some quick arithmetic
I know I'll never see the sun, as 1.7321
Such is my reality, a sad irrationality When hark! What is this I see,
Another square root of a three
Has quietly come waltzing by,
Together now we multiply
To form a number we prefer,
Rejoicing as an integer
We break free from our mortal bonds
And with a wave of magic wands
Our square root signs become unglued And love for me has been renewed.

By: David Feinberg

Ex: Convert from a power to a radical

$$
\begin{array}{rlrl}
\left(8 x^{2}\right)^{1 / 3} & =8^{1 / 3} x^{2 \cdot \frac{1}{3}} & \left(x^{4}\right)^{\prime} 8 & =x^{12 / 8} \\
& =8^{1 / 3} x^{\frac{2 / 3}{3}} & & x^{3 / 2} \\
& =2 \sqrt[3]{x^{2}} & & x^{3 / 2} \\
& =2 \sqrt{x^{3}} \\
& =2\left(\sqrt[3]{x^{2}}\right)^{2} & & =(\sqrt{x})^{3} \\
& &
\end{array}
$$

Convert from a radical to a power

$$
\begin{array}{rlrl}
\sqrt[(4)]{x^{3}} & =x^{\frac{3}{(4)}} & \sqrt\left[(n]{27^{2}}\right. & =27^{\frac{2}{(n)}} \\
& =x^{3 / 4} & & 27^{2 / n} \\
& =\left(3^{3}\right)^{2 / n} \\
& =3^{3 \cdot \frac{2}{n}} \\
& =3^{6 / n}
\end{array}
$$

Convert Mixed radicals to Entire Radicals

$$
\begin{aligned}
4 \sqrt{11} & =\sqrt{16} \cdot \sqrt{11} & 2 \sqrt[3]{5} & =\sqrt[3]{8} \cdot \sqrt[3]{5} \\
& =\sqrt{(16 \cdot 11)} & & =\sqrt[3]{8 \cdot 5} \\
& =\sqrt{176} & & =\sqrt[3]{40}
\end{aligned}
$$

Convert mixed form to power form

$$
\begin{aligned}
\sqrt[3]{24} \cdot 3^{2 / 3} & =24^{\frac{1}{3}} \cdot 3^{\frac{2}{3}} & \frac{(3 \sqrt{18}) \cdot\left(2^{3 / 2}\right)}{} & =\left(\frac{3 \cdot \sqrt{9 \cdot 2})\left(2^{3 / 2}\right)}{2^{2}}\right. \\
& =(3 \cdot 8)^{1 / 3} \cdot 3^{2 / 3} & & =2 \cdot \sqrt{9} \cdot 15 \cdot 7^{3 / 2}
\end{aligned}
$$

$$
\begin{aligned}
v<4 \cdot \sigma & =(3 \cdot 8)^{1 / 3} \cdot 3^{2 / 3} \\
& =3^{1 / 3} \cdot 8^{1 / 3} \cdot 3^{2 / 3} \\
& =3^{1 / 3} \cdot 3^{2 / 3} \cdot 8^{1 / 3} \\
& =3^{1 / 3+2 / 3} \cdot 2 \\
& =3 \cdot 2 \\
& =6
\end{aligned}
$$

$$
-\frac{}{3^{2}}
$$

$$
\begin{aligned}
& =\frac{3 \cdot \sqrt{9} \cdot \sqrt{2} \cdot 2^{3 / 2}}{3^{2}} \\
& =\frac{3 \cdot 3 \cdot \sqrt{2} \cdot 2^{3 / 2}}{3 \cdot 3}
\end{aligned}
$$

$$
=2^{1 / 2} \cdot 2^{3 / 2}
$$

$$
=2^{4 / 2}
$$

$$
=2^{2}
$$

$$
=4
$$

$$
2 \sqrt{18}, 2^{3 / 2}, 3 \sqrt{2}, \sqrt{32}
$$

Homework CH 4.4 pg 192

$$
\begin{aligned}
& 1-9(\text { ace }) \\
& 10,12,14,19
\end{aligned}
$$

