

Example: Label the following triangles given the indicated angle

The Tangent Ratio

Examples

Find x
Step 1: label the \triangle

$$
\begin{aligned}
\operatorname{Tan} \theta & =\frac{\text { opp }}{a d j} \\
4 \times[\operatorname{Tan} 30] & =\left[\frac{x}{4}\right] \times 4 \\
4 \operatorname{Tan} 30 & =x \\
(4)(0.5774 \ldots) & =x \\
2.31 & =x
\end{aligned}
$$

Inverse Tangent Ratio

All functions in math have opposites
Examples: $\begin{aligned} & x \div[]^{2} \\ & t-\sqrt{[]}\end{aligned}$
The inverse Tangent Function is the opposite to the Tangent Function

$$
\begin{aligned}
& \operatorname{Tan}[45]=1 \\
& \operatorname{Tan}^{-1}[1]=45
\end{aligned}
$$

$$
\operatorname{Tan}^{-1}[x] \quad x: \text { any Real number }
$$

It can be found on your calculator by hitting and function or Shift and then Tan

Exupl

Find θ_{1} and θ_{2} using
the inverse tangent.
Step 1: pick an angle
$\underline{\underline{\theta_{2}}}$

$$
\operatorname{Tan} \theta_{2}=\frac{3}{4}
$$

$$
\theta_{2}=\operatorname{Tan}^{-1}\left[\frac{3}{4}\right]
$$

$$
\theta_{2}=37^{\circ}
$$

θ_{1}
$\operatorname{Tan} \theta_{1}=\frac{4}{3}$

$$
\operatorname{Tan}^{-1}[\operatorname{Tan} \theta]=\operatorname{Tan}^{-1}\left[\frac{4}{3}\right]
$$

$$
\theta_{1}=53^{\circ}
$$

Homework: 1-13 odd CH3 pg: 107
washroom/wates
Pythagerous Theorem

$$
b \frac{c}{a} \quad a^{2}+b^{2}=c^{2}
$$

