3.3 Solving the whole Triangle

We now have the following formulas that we can use to solve triangles

$$
\operatorname{Sin} \theta=\frac{O}{H} \quad \operatorname{Cos} \theta=\frac{A}{H} \quad \operatorname{Tan} \theta=\frac{O}{A}
$$

From last year, you will also remember these formulas for solving triangles

$$
\frac{c}{a / b}
$$

$$
a^{2}+b^{2}=c^{2}
$$

$$
\theta_{1}+\theta_{2}+\theta_{3}=180
$$

Solving a whole triangle means, finding all the angles of the triangle and all the side lengths.

Examples: Solve the Triangles

Solve for y

$$
\begin{aligned}
\cos \theta & =\frac{A}{H} \\
5[\cos 37] & =\left[\frac{y}{5}\right] 5 \\
5 \cos 37 & =y \\
4 & =y
\end{aligned}
$$

Solve for x

$$
\begin{aligned}
& \overline{\sin \theta=\frac{0}{1}} \\
& 5\left(\sin 37=\left[\frac{x}{5}\right] 5 \xlongequal{\circ}=9\right.
\end{aligned}
$$

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
4^{2}+x^{2} & =5^{2} \\
x^{2} & =a
\end{aligned}
$$

Can you solve this triangle?

Word Problems: A tower is supported by two steel guide wires that are attached half way up the tower. The wires have an angle of elevation of 42°. The tower is 230 ft . How much wire is used to support the tower?

Chapter 3 Page 2

Two guide vines

$$
x \sin 42=115
$$

$$
2 \times 172=344 \mathrm{ft}
$$

$$
x=\frac{115}{\sin 42}
$$

$$
x=172 \mathrm{ft}
$$

If the wire has a diameter of 1 in, then how much steel is used to make the wires?

$r=0.5 \mathrm{in}$
$342 f t \times \frac{12 \mathrm{in}}{1 f t}=4104 \mathrm{in}$

$$
\begin{aligned}
V & =\pi r^{2} h \\
& =\pi(0.5)^{2}(4104) \\
& =3223 \mathrm{in}^{3}
\end{aligned}
$$

in feet

$$
3223 i i^{3} \times \frac{1 \mathrm{ft}}{12 i n} \times \frac{1 \mathrm{ft}}{12 i n} \times \frac{1 \mathrm{ft}}{12 i n}=\frac{1.87 \mathrm{ft}^{3}}{}
$$

The boring company wants to create a tunnel to help alleviate traffic. The tunnel must be 130 m deep and must have an angle of depression of 7°. If you were drive down this tunnel, how far would you have to drive before reaching the bottom? Answer in Kilometers.

Chapter 3 Page 3

