Electric Kettle Efficiency

May 1, 2017 12:23 PM

Your Lab Write up Needs to have

Objective: What you are going to do in your lab. The Goal or purpose of it.

Diagram: Must show all equipment being used and the setup of that equipment. (Drawn with

pencil and ruler)

Theory: Describe the physics being used and explain why what you are doing should work.

(Should include formulas being used)

Procedures: Step by step guide to doing the lab

Data section: Neatly provide all the data collected (use tables when appropriate)

Calculations: provide a sample calculation of each type used

Discussion and Errors: Discuss observations and possible errors in your lab Conclusion: State what your lab found (very similar to the objective)

Phase 1: Experimentally Calculate the specific heat capacity of a clear liquid

Theory:	Two liquids, one unknown, one hours.
Circid	Kronn Ciquid we will know m, C, DT Ciquid unknown Liquid we will measure m, DT
	different J mix together: Ciquid 1 will deposit energy into Temperatures
Procedure	ie. $Q_1 = -Q_2$
	Now we will know Qz, mz, DTz So we can Calculate C

Phase 2: Calculate the efficiency of an electric Kettle

Theory:

E = Pout we know the input power -

Energy Work Page 1

Procedure:

We know the input power How will we find the output power
$$P = \frac{\omega}{t}$$
 - measure the time $W = \Delta E = \Delta Q$ - measure M , T_f , T_i $Q = MC(T_f - T_i)$ - use C from Phase 1

Calculate Q and use it to Find Port = Q