Slope Point form is useful when our linear relation does not have a nice y-intercept

$$
\begin{gathered}
\left(y-y_{1}\right)=m\left(x-x_{1}\right) \\
m: \text { slope } \\
\left(x_{1}, y_{1}\right): \text { Any point on the line }
\end{gathered}
$$

Writing Slope Point form from a graph

$$
\begin{aligned}
& m: \frac{5}{10}=\frac{1}{2} \\
& \left(x_{1}, y_{1}\right):(-5,3) \\
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-3=\frac{1}{2}(x-(-5)) \\
& y-3=\frac{1}{2}(x+5) \\
& \left(x_{1}, y_{1}\right)=(5,8) \\
& y-8=\frac{1}{2}(x-5)
\end{aligned}
$$

Graphing Slope Point form

$$
\begin{array}{cc|}
\begin{array}{cc}
y+3=3(x-1) \\
y-(-3)=3(x-(1) & y-y_{1}=m\left(x-x_{1}\right) \\
y_{1} & \left.m=\frac{3}{1}\right)_{\text {moi }}^{h_{0}}, \\
x_{1} & \left(x_{1}, y_{1}\right)=(1,-3)
\end{array} \\
\hdashline
\end{array}
$$

Slope Point Form to Slope intercept form

$$
\begin{aligned}
y-3 & =2(x-3) \\
y-x & =2 x-6 \\
+3 & +3 \\
y & =2 x-3
\end{aligned}
$$

$$
\begin{aligned}
y+4 & =\frac{-3}{5}\left(x-\frac{2}{1}\right) \\
y+4 & =\frac{-3}{5} x+\frac{6}{5} \\
-4 & -4 \\
y & =\frac{-3}{5} x+\frac{6}{5}-4 \times \frac{5}{5}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{-3}{5} x+\frac{6}{5}-\frac{20}{5} \\
y & =\frac{-3}{5} x-\frac{14}{5}
\end{aligned}
$$

Slope Point Form to General form

$$
\begin{aligned}
& y+1=\frac{3}{2}(x+1) \quad A x+B y+C=0 \\
& 2 x[y+1]=\left[\frac{3}{2} x+\frac{3}{2}\right] \times 2 \\
& 2 y+2=3 x+3 \\
&-3 x \\
&-3 x \quad \rightarrow(-1)(-3 x+2 y-1)=(0)(-1) \\
&-3 x+2 y+2=3 \\
&-3-3 \\
&-3 x+2 y-1=0 \quad 3 x-2 y+1=0
\end{aligned}
$$

Homen.er

$$
\begin{array}{ll}
P_{g}: 367 & Q: 10,13 \\
P_{y}: 377 & Q: 1,2,3,6,7,8,17
\end{array}
$$

$$
\begin{aligned}
& \text { Batrror } \\
& \quad-\text { SQ }-1<O \cap \\
& \quad-G a b \\
& \text {-Sophia }
\end{aligned}
$$

