Light rays travel in straight lines and so when we see one we assume it is coming straight towards us.
But as physics students we know that light can be refracted and bent.

Plane mirrors form images at the same distance to the mirror as the object. This image is a virtual image as it is behind the mirror and impossible to project on a piece of paper in the real world.

Question: Do we see more of ourselves as we get closer to the mirror or less?
we see the Same amount

Question: What size of mirror do we need to see all of ourselves?
half our height

Question: In a plane mirror is the images height larger, smaller or equal to the objects?
The Sure height

Plane Mirrors: Are flat reflective surfaces that create a virtual image with the same height as the object and at the same distance from the mirror as the object.

Concave Mirrors Converging $d_{0}=-d^{\prime}$

These are mirrors that are curved with their outer edges closer to you then their centers. Just like a parenthesis ")". They reflect light towards their focal points.

The most ideal curved mirror is a Parabolic Mirror but these are extremely difficult to produce accurately. Most Parabolic Mirrors are approximations created from taking a small portion of a spherical mirror.

Parabolic Mirror

ho= height of object. do = distance to object

