Lenses
A lens is a carefully shaped piece of glass that can focus light rays. Various Lens Shapes
Converging lenses have a positive focal length and are thickest in the middle.

Diverging lenses have a negative focal length and are thickest at the edges Lenses use refraction to focus the light rays.

All the light rays converge at one spot. All the light rays spread out.

3 Rules are used to find the images formed by lenses.

1) Light rays that are parallel to the principal axis of a lenses are refracted through the focal point.
2) Light rays that pass through the focal point are refracted parallel to the principal axis.
3) Light rays passing through the center pass through without being refracted.

Real Image - the actual rays pass through the focal point. Real Rays meet at image
Virtual Image - The rays do not pass through the focal point. Trace rays back to find image sign Convention for Thin Lenses:

1. Focal length is for converging lenses and - for diverging lenses
2. d_{0} is + if the object is on the side of lens from which the light is coming,
otherwise it is negative

- Positive far Real image - Negative for Vistual image otherwise it is negative.

4. h_{i} and h_{0} are positive above the Principal Axis and negative below Axis.

If M (magnification) is + , the image is erect (right side up)
If M (magnification) is - , the image is inverted (upside down)

The Lens Maker's Equation:
$d_{0}=$ distance from object to lens.
$d_{i}=$ distance from image to lens.
$f=$ focal point (half the distance to center) of cursutur)

$\frac{1}{d_{0}}+\frac{1}{d_{i}}=\frac{1}{f} \Rightarrow f=\frac{d_{0} d_{i}}{d_{0}+d_{i}}$
(The units are any unit of length, just keep them the same)
The Magnification Equation

Telescope
Microscope

$$
\begin{aligned}
& f=5 \mathrm{~cm} \\
& d_{0}=12 \mathrm{~cm} \\
& h_{0}=2 \mathrm{~cm} \\
& h_{i}=? \\
& d_{i}=?
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{d_{0}}+\frac{1}{d_{i}}=\frac{1}{f} \\
& \frac{1}{12}+\frac{1}{d i}=\frac{1}{5} \\
& \frac{1}{d_{i}}=\frac{1}{5}-\frac{1}{12} \\
& \begin{aligned}
d_{i}=\frac{1}{\frac{1}{5}-\frac{1}{12}} & \text { or } d_{i}
\end{aligned}=C \\
& M=-\frac{d_{i}}{d_{0}} \\
& \frac{h_{i}}{h_{0}}=M \\
& M=-0.714 \\
& h_{i}=(-0.714)(2) \\
& =-1.43 \mathrm{~cm}
\end{aligned}
$$

converging lens

rule \#1

$$
\begin{aligned}
& d_{0}=3 \mathrm{~cm} \\
& f=5 \mathrm{~cm} \\
& h_{0}=2 \mathrm{~cm} \\
& \frac{1}{d_{0}}+\frac{1}{d_{i}}=\frac{1}{f} \\
& \frac{1}{3}+\frac{1}{d i}=\frac{1}{5} \\
& \frac{1}{d i}=\frac{1}{5}-\frac{1}{3} \\
& d_{i}=\left(\frac{1}{5}-\frac{1}{3}\right)^{-1} \\
& 1 .--1 \leftarrow \text {. }
\end{aligned}
$$

$$
M=-\frac{d_{i}}{d_{d}}=\frac{h_{i}}{h_{0}}
$$

$$
\frac{-(-7.5)}{3}(2)=
$$

$$
\begin{aligned}
& \left.\frac{1}{5}-\frac{1}{12}\right)^{-1} \\
& .57
\end{aligned}
$$

$$
\begin{array}{ll}
d_{i}=\left(\frac{1}{5}-\frac{1}{3}\right)^{-1} & 5 \mathrm{~cm}= \\
d_{i}=-7.5 \mathrm{~cm} &
\end{array}
$$

$$
\begin{array}{ll}
d_{0}=7 \mathrm{~cm} & \frac{h_{i}}{h_{0}}=\frac{-d_{i}}{d_{0}} \\
h_{0}=11 \mathrm{~cm} & h_{i}=-\frac{d_{i} h_{0}}{d_{0}} \\
f=-17 \mathrm{~cm} & \frac{1}{d_{0}}+\frac{1}{d_{i}}=\frac{1}{f} \\
& d_{i}=\left(\frac{1}{-17}-\frac{1}{7}\right)^{-1}
\end{array} \quad h_{i}=\frac{-(-5)(11)}{7} .
$$

Wave Properties

$$
\begin{array}{ll}
T=\frac{1}{f} & \text { T: Period (Seconds per wave) } \\
v=\frac{d}{t} & \\
& \lambda: \text { frequency (wares per Second) } \\
v=\frac{\lambda}{T} & \\
& \text { t: time } \\
& \text { di distance } \\
& v: \text { speed }
\end{array}
$$

Refraction/Reflection
$n^{\prime}=\frac{C}{V^{\prime}} \quad C:$ Speed of light $\left(3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)$ in Vacuum
V^{\prime} 'Speed of light ir medium
n^{\prime} : index of refraction for the medium
$n_{i} \operatorname{Sin} \theta_{i}=n_{r} \operatorname{Sin} \theta_{r} \quad n_{i}$: incident medium
n_{r} : refraction medium
θ_{i} : incident angle
θ_{r} : refraction angle
θ indent $=\theta_{\text {reflection }}$

$$
\begin{array}{ll}
\sin \theta_{c}=\frac{n_{r}}{n_{i}} & \theta_{c}=\text { critical angle } \\
\frac{1}{f}=\frac{1}{d_{i}}+\frac{1}{d_{0}} & f=\text { focal Point } \\
\mu=-\frac{d_{i}}{d_{0}}=\frac{h_{i}}{h_{0}} & d_{0}=\text { distance to object } \\
h_{i}=\text { distance to sight of image }
\end{array}
$$

$$
h_{0}=\text { height of object }
$$

