Momentum of a particle is the product of its mass and its velocity. As velocity is a vector quantity, so momentum itself is also a vector (i.e. it has both magnitude and direction) It has the same direction as the direction of the object in motion.

Momentum

Symbol: \vec{p}
SI Unit: kilogram meter per second ($\mathrm{kg} \times \mathrm{m} / \mathrm{s}$ direction)

$$
\binom{\text { or Newton Seconds }}{\text { N.S }}
$$

A heavy object moving slowly can have the same momentum as a light object moving quickly.

Ex 1: Compare the momentum of a 0.1 kg bullet moving at $1000 \mathrm{~m} / \mathrm{s}$ and a 60 kg student moving at $1.7 \mathrm{~m} / \mathrm{s}(6 \mathrm{~km} / \mathrm{h})$

$$
\begin{aligned}
P_{\text {bullet }} & =(0.1)(1000) & P_{\text {student }} & =(60)(1.7) \\
& =100 \mathrm{kgm} / \mathrm{s} & & =102 \mathrm{~kg} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Ex 2: How fast does a 200 g baseball need to be moving to have the equivalent momentum as a 5 kg bowling ball moving $8 \mathrm{~m} / \mathrm{s}$ down a bowling lane?

$$
\begin{aligned}
P_{1} & =\rho_{2} \\
(0.2)(V) & =(5)(8) \\
V & =\frac{(5)(8)}{0.2} \\
r & =200 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

To change the velocity of an object we need to apply a force to it for a period of time. This will give the object an acceleration, but that acceleration will be dependent on the force applied and the mass of the object ($\mathrm{F}=\mathrm{ma}$).

What we find is that heavy objects are harder to stop or move then lighter ones.

Impulse

Impulse is the force exerted on an object over a period of time.

$$
\begin{aligned}
& \boldsymbol{I m p}=\boldsymbol{F} \cdot \boldsymbol{t} \quad \frac{\text { Units }}{\mathrm{N} \cdot \mathrm{~S}} \\
& \operatorname{Imp}=P_{f}-P_{j} \quad \mathrm{kgm} / \mathrm{s}
\end{aligned}
$$

Graphically the impulsive force may look like the graph below;
 Point of maximum

Far in space, where gravity is negligible, a 425 kg rocket traveling at 75 m / s fires its engine. The figure shows the thrust force as a function of time. The mass lost by the rocket during these 30.0 s is negligible.
a. What impulse does the engine impart to the rocket?
b. At what time does the rocket reach it maximum speed? What is the maximum speed?

From the problem above:

$$
\begin{aligned}
& \operatorname{Imp}=\Delta p \\
& \operatorname{Imp}=m\left(\overrightarrow{v_{f}}-\overrightarrow{v_{i}}\right)
\end{aligned}
$$

Combining the equation of impulse before with the one above we get:

$$
\vec{F} \cdot t=m\left(\overrightarrow{v_{f}}-\overrightarrow{v_{i}}\right)
$$

Ex 1: a) What impulse is needed to make a 60 kg person moving at $5 \mathrm{~m} / \mathrm{s}$ to end up moving at $2 \mathrm{~m} / \mathrm{s}$?

$$
\begin{aligned}
\text { Impulse } & =m\left(r_{f}-v_{i}\right) \\
& =60(2-5) \\
& =60(-3) \\
& =-180 \mathrm{kgm} / \mathrm{s}
\end{aligned}
$$

b) If the impulse used a force of -20 N . How long would this force need to be incontact with the person?

$$
\begin{aligned}
& \text { Impulse }=F \cdot t \\
& -180=-20 \cdot t \\
& -180=t \\
& =20=t \\
& 19 s=t
\end{aligned}
$$

c) What force would need to be used to change this persons velocity in 0.5 s?

$$
\begin{aligned}
& \text { Impulse }=F \cdot t \\
& -180=F(0.5) \\
& \frac{-180}{0.5}=F \\
& -360 N=F
\end{aligned}
$$

2. An impulse of $-25 \mathrm{kgm} / \mathrm{s}$ is imparted upon a 2 kg object moving at $3 \mathrm{~m} / \mathrm{s}$. what is its new velocity?

$$
\begin{aligned}
I_{m p} & =m\left(V_{f}-V_{i}\right) \\
\frac{-25}{2} & =\frac{2\left(V_{f}-3\right)}{2} \\
-12.5 & =V_{f}-3 \\
+3 & +3 \\
-9.5 \mathrm{~m} / \mathrm{s} & =V_{f}
\end{aligned}
$$

Impulse Graphs - The area under a force vs. time graph give us the impulse.

- Burniry

BUS

- Bears
(
A) A 20 kg object experiences an impulse from the graph above, from $10 \mathrm{~m} / \mathrm{s}$ what is the new velocity?

$$
\begin{aligned}
\text { Imp } & =\text { Fit } \\
& =\text { Area under the curve } \\
I_{m p} & =115 \mathrm{~N} \cdot \mathrm{~S}
\end{aligned}
$$

$$
\Gamma \bar{S}=\mu\left(V_{f}-V_{i}\right)
$$

$$
115=20\left(v_{f}-10\right)
$$

$$
\frac{115}{20}+10=r_{f}
$$

$$
r_{f}=15.75 \mathrm{~m} / \mathrm{s}
$$

What is the final velocity of the 5 kg block, initially at rest, after it has had an impulse imparted(applied) on it. Use the graph to help you.

If the mass of the object is 3.0 kg , what is its final velocity over the 8.0 s time period if it starts from rest?

Conservation of Momentum

Closed System: Does not exchange any matter with its surroundings and no external forces act on the system.

Conservation of Momentum tells us that in a closed system the total initial momentum equals the total final momentum. In other words no momentum is lost.

$$
\overrightarrow{\boldsymbol{p}_{i}}=\overrightarrow{\boldsymbol{p}_{f}}
$$

In this section we will explore what happens to the momentum of a system in three types of collisions.

Collisions (Non-stick)	totally Elastic
Collisions (Stick)	inelastic
Explosions (break apart)	inelastic

Below is a totally elastic collisions. Find the Velocity of Object 1.
Given:
$\mathrm{M}_{1}=4 \mathrm{~kg}$
$V_{1 i}=8 \mathrm{~m} / \mathrm{s}$
$\mathrm{M}_{2}=3 \mathrm{~kg}$
$V_{2 i}=-8 \mathrm{~m} / \mathrm{s}$
$p_{i}=m_{1} v_{1 i}+m_{2} v_{2 i}$
$=(4)(8)+(3)(-8)$
$P_{i}=8 \mathrm{kgm} / \mathrm{s}$
$P_{f}=M_{1} V_{1_{f}}+M_{2} V_{2 f}$
$=(7)\left(V_{1 f}\right)+(3)(14)$
$P_{f}=4 V_{I_{f}}+42$
$P_{i}=P_{f}$
$8=4 V_{1 f}+42$

$$
\begin{aligned}
& -42 \\
& -34=\frac{4 V_{1 f}}{2} \quad \sqrt{-8.5 \mathrm{~m} / \mathrm{s}=V_{i s}}
\end{aligned}
$$

$$
\begin{aligned}
& 0 \\
& \frac{-34}{21}=\frac{4 V_{1 f}}{4} \quad-8.5 \mathrm{~m} / \mathrm{s}=V_{\text {if }}
\end{aligned}
$$

Below is a inelastic collision where the two objects collide and stick together. Find the
mass of Object 2.
Initial
Two objects approach and collide.

$$
\begin{aligned}
& \mathrm{M}_{1}=5.0 \mathrm{~kg} \\
& \mathrm{~V}_{1 \mathrm{i}}=6.0 \mathrm{~m} / \mathrm{s} \\
& \mathrm{~V}_{2 \mathrm{i}}=-4.0 \mathrm{~m} / \mathrm{s} \\
& \mathrm{~V}_{\mathrm{f}}=1.5 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
P_{i}=m_{1} V_{1 i}+m_{2} V_{2 i}
$$

They stick and move together. After:

$$
\begin{aligned}
P_{f} & =\left(m_{1}+m_{2}\right) V_{f} \\
& =\left(5+m_{2}\right)(1.5) \\
P_{f} & =7.5+1.5 m_{2} \\
P_{i} & =P_{f} \\
30-4 m_{2} & =7.5+1.5 m_{2} \\
30-7.5 & =1.5 m_{2}+4 m_{2} \\
\frac{22.5}{5.5} & =\frac{5.5 m_{2}}{5.5}
\end{aligned}
$$

Below is an explosion. Find the relative velocities of the masses $M_{1}=12 \mathrm{~kg}$ and $\mathrm{M}_{2}=9 \mathrm{~kg}$. If the initial momentum of the system is 0 .

$$
\begin{aligned}
& p_{i}=0 \\
& p_{f}=m_{1} V_{1_{f}}+m_{2} V_{2 f} \\
& p_{f}=12 V_{1 f}+q V_{2 f} \\
& 0=p_{f} \\
& -9 V_{2 f}=\frac{12 V_{1 f}}{-9} \\
& V_{2 f}=\frac{-4}{3} V_{1 f}
\end{aligned}
$$

After

$$
\begin{aligned}
p_{i} & =(7+0.0095)(0) \\
p_{i} & =0 \mathrm{~kg} \mathrm{~m} / \mathrm{s} \\
p_{f} & =(0.0095)(900)+(7) V_{\text {recoil }} \\
P_{i} & =P_{f} \\
0 & =-8.55+7 V_{\text {recoil }} \\
78.55 & +8.55 \\
\frac{8.55}{7} & =\frac{7 V_{\text {recoil }}}{7} \\
1.22 \mathrm{~m} / \mathrm{s} & =V_{\text {recoil }}
\end{aligned}
$$

What if the 67 kg person holding the gun puts their full weight behind it?
Sure as before pass to
but add more 10777

$$
\begin{aligned}
& 0=(0.0095)(900)+77 r_{f} \\
& r_{f}=-\frac{(0.0095)(900)}{77} \\
& r_{f}=-0.11 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

The ballistic pendulum was used to measure the speeds of bullets before electronic timing devises were developed. The version shown in the figure consists of a large block of wood of mass $M=5.4 \mathrm{~kg}$, hanging from two long cords. A bullet of mass $m=9.5 \mathrm{~g}$ is fired into the block, coming quickly to rest. The block+bullet then swing upward, their center of mass rising a vertical distance $h=6.3 \mathrm{~cm}$, with this information they were able to find the final velocity of the bullet pendulum system to be $1.11 \mathrm{~m} / \mathrm{s}$. What was the initial velocity of the bullet.

