Force: Electrostatics

May 20, 2016 9:45 AM

> The Smallest unit of charge known in nature is the charge on an electron or proton. This is called the elementary charge.

 $|e| = 1.602 \times 10^{-19} C$ (The unit for charge is the Coulomb C)

Particle

Electron (e)

Charge: $-e = -1.602 \times 10^{-19} \text{C}$ Mass: $m_e = 9.11 \times 10^{-31} kg$

Proton (p)

Charge: $e = 1.602 \times 10^{-19} C$ Mass: $m_p = 1.67 \times 10^{-27} \text{kg}$

Neutron (n)

Charge: no charge or 0 C Mass: $m_n = 1.67 \times 10^{-27} \text{kg}$

Alpha Particle (α) is the Helium nucleus which is 2 protons and 2 neutrons **Beta Particle (β)** is a high energy electron

Rule for Charges

Like charges repel and opposite charges attract. Two charges that exert a force of attraction or repulsion on each other is described by Coulomb's law.

Coulombs Law

$$F = \frac{kQ_1Q_2}{r^2}$$

Unit: Newton (N)

$$k = 9 \times 10^9 \quad \frac{N \cdot m^2}{C^2}$$

Q: charge of first Particle
Qz: charge of z= Particle

1: distance between the
Particles centurs

Example 1:

$$m = 10^{3}$$
 $M = 10^{9}$
 $h = 10^{9}$

$$F_{72} = \frac{KQ_{1}Q_{2}}{\Gamma^{2}} = \frac{(9 \times 10^{9})(30 \times 10^{6})(70 \times 10^{6})}{(0.8)^{2}}$$

$$= 8.4375N$$

$$F_{32} = KQ_{3}Q_{2} = \frac{(9 \times 10^{9})(10 \times 10^{6})(70 \times 10^{6})}{(0.5)^{2}}$$

$$= 8.4375 - 21.6$$

$$= -1310$$

charge.

 $F_{21} = kQ_{2}Q_{1}$ $= (9 \times 10^{9})(20 \times 10^{6})(30 \times 10^{6})$ = 9.41375 N

$$F_{31} = \frac{K Q_3 Q_1}{\Gamma_{3.2}}$$

$$= (9 \times 10^{9})(-10 \times 10^{6})(30 \times 10^{6})$$

$$= (9 \times 10^{9})(-10 \times 10^{6})(30 \times 10^{6})$$

$$F_{31} = -3.034N$$

$$= Cattraction$$

Force diagram

$$F_{31y} = F_{31} \sin \theta$$

= 3.034 \sin 32
= 1.608 N down

$$F_{Net_{X}} = F_{31_{X}} - F_{21}$$

= $7.573 - 8.4375$
= $-5.8645N$

1.608N Freet
$$FNet=5.8645$$
 $PNet=5.8645$ $PNet=5.8645$

Force or 30ml Charge is 6.08IN @ 15.3° Sofw

Practice p. 497 Q'11,13

How many electrons make up -30 micro-coulombs of charge?
A 20 micro-coulomb charge is made of just <u>protons</u>. What is the mass of the charge?

$$e^{-} = -1.602 \times 10^{19}$$
 $p^{+} = 1.602 \times 10^{-19}$
 $p^{+} = 1.602 \times 10^{-19}$
 $p^{-} = 1.67 \times 10^{-19}$
 $p^{-} = 1.25 \times 10^{-19}$

Start Working on the problems on page 497 (1-20) odd Do what you can do . we will go over more electro statics this wek.

$$F = KQ_1Q_2$$
 $K = 9 \times 10^9 \frac{N \cdot m^2}{c^2}$
 $|e| = 1.662 \times 10^{14} \text{ C}$ electron & froton

